
1

A Deep Dive into Deprecation Declarations in the
Rust Package Ecosystem

Minyu Shu, Meng Fan, Yuxia Zhang, Tao Wang, and Hui Liu

Abstract—Utilizing third-party open source libraries is fundamental to modern software development because it can enhance productivity
and software quality. However, libraries may cease maintenance and become deprecated, negatively impacting the projects that rely on
them. Promptly identifying and addressing deprecated libraries can help developers mitigate potential risks within their projects. As a
programming language known for its emphasis on safety, Rust’s package manager currently does not provide a direct mechanism for
deprecation. Nevertheless, Rust developers can still declare deprecation using certain methods offered by GitHub and the official Rust
package registry, crates.io. However, the current usage of these deprecation mechanisms in the Rust ecosystem, as well as their
effectiveness, remains underexplored. This paper addresses this gap by empirically studying the prevalence of deprecation declarations
in Rust libraries, the effectiveness of different ways of declarations, and the reasons for using deprecated libraries to understand how
deprecation information is disseminated and perceived in the current Rust ecosystem. We found that: 1) Among the 13,289 inactive
libraries in the Rust ecosystem, only 11% of them indicate their deprecated status; 2) Among the packages that released a new version
after their dependent library declared deprecation, 38.9% still chose to use the deprecated library in their new releases; 3) Despite
developers being able to actively or passively discover deprecated libraries within their projects through various means, unawareness of
library deprecation is a significant reason for developers using deprecated libraries. Based on these findings, we discuss practice insights
to help improve the deprecation mechanism and mitigate software dependency risks.

Index Terms—Software supply chain, Rust, Deprecation declaration, Software maintenance

✦

1 INTRODUCTION

DON’T reinvent the wheel. Modern software development
always utilizes existing libraries, frameworks, or other

modules to create new products, forming complex software
supply chains [1]. Software reuse can effectively accelerate
the pace and enhance the quality of software development
while reducing associated costs [2]. Nowadays, open source
software (OSS) has played a fundamental role in information
technology, and the majority of reused code is open source.
As reported recently, up to 97% of commercial software
contained open source code [3].

However, incorporating OSS libraries into projects can
also introduce risks [4, 5]. Numerous OSS packages may
become deprecated due to factors such as heightened compe-
tition, a lack of development time and interest from core
developers [6], or dependence on outdated technologies
[7, 8]. Once a library becomes unmaintained, any new
vulnerabilities in that library will remain unaddressed, and
the fixes for these vulnerabilities in upstream libraries will
become inaccessible, thereby affecting all software relying on
that library [9].

To alert users of a library about its maintenance status,
some package managers, such as NPM, allow developers
to mark a library as deprecated, then provide a deprecation
warning to all who attempt to install it [10]. Known for
its safety and high performance, Rust has been voted as
the most loved programming language by developers for

• Minyu Shu, Meng Fan, Yuxia Zhang, and Hui Liu are with the School of
Computer Science and Technology, Beijing Institute of Technology, Beijing,
China. E-mail: yuxiazh@bit.edu.cn. (Corresponding author: Yuxia Zhang.)

• Tao Wang is with the School of Computer Science, National University of
Defense Technology, Hunan, China.

seven consecutive years [11]. However, Rust’s package
manager, Cargo1, has not yet provided an official way to
deprecate a library. Nevertheless, Rust library developers can
proactively declare deprecation through methods provided
by the Rust package retrieval website, i.e., crates.io, and
GitHub. Among these deprecation methods, if a library
becomes unusable after being deprecated, we refer to it
as mandatory deprecation. If the deprecation serves only as
a warning or recommendation, we refer to it as advisory
deprecation. There is currently a lack of research on how
these two types of deprecation are used and how they impact
downstream packages.

Regarding deprecated libraries, Zhong et al. [12] and
Miller et al. [13] have conducted studies on deprecated
libraries in the Python and NPM ecosystems, respectively,
exploring their impact on downstream dependencies. How-
ever, their definitions of deprecated libraries do not account
for the unique deprecation mechanisms of each ecosystem,
making their findings not directly applicable to the Rust
ecosystem. Additionally, their research did not investigate
the broader impact of deprecated libraries on the software
supply chain. To have a thorough understanding of the usage
and impact of deprecation declarations in the rising Rust
ecosystem, we conducted this empirical study by mining
and analyzing packages from Rust’s official package registry
(crates.io). Specifically, we formulated and answered the
following research questions:

RQ1: How many libraries that have not been maintained
for a long time explicitly declare deprecation?

We started our research by investigating inactive Rust
libraries hosted on GitHub that have not been maintained

1. https://doc.rust-lang.org/cargo/guide/why-cargo-exists.html

2

for over 1 year, as these inactive libraries are potential
candidates for explicit declaration of deprecation. We found
that among 13,289 inactive libraries, only 11% of them
declared deprecation, leaving the maintenance status of the
majority of libraries unknown.

RQ2: What impact does the declaration of library
deprecation have on downstream dependencies?

We categorize the ways to deprecate libraries into two
types: mandatory deprecation and advisory deprecation. We
found that the former effectively forces all alive downstream
packages to abandon their dependency on these libraries.
However, this can cause issues for packages that directly or
indirectly depend on them. The latter, serving as a warning,
exhibits a limited impact on deterring new packages from
adopting deprecated libraries. Among the packages that
released a new version after their dependent library declared
deprecation, 38.9% still chose to use the deprecated library
in their new releases.

RQ3: Why do some developers still use libraries that
have been declared deprecated?

Given the discovery in RQ2 that many active packages
continue to use deprecated libraries, we surveyed developers
of these packages that are still maintained to understand the
reasons. We categorized the reasons into four main categories,
with unawareness of the existence of deprecated libraries in
the project being the most commonly cited reason.

To the best of our knowledge, this is the first study to
investigate how deprecation declarations are published and
perceived, and their impacts in the Rust ecosystem, one of
the fastest-growing programming language ecosystems. Our
findings can shed light on the shortcomings of the current
Rust library management mechanism and offer insights for
improvements to the deprecation mechanism.

In the remaining sections of the paper, Section 2 provides
an introduction to the background of our study. Section 3
introduces the source of our experimental data. Sections
4 to 6 each address a specific research question. Section 7
discusses the implications of our findings. Section 8 discusses
the threats to the validity of our study. Section 9 concludes
this paper.

2 BACKGROUND

To better elucidate the content of our experiments and make
them more comprehensible, in this section, we introduce
the related work, discuss the dependency management
system of Rust’s package manager Cargo, and define the
terminology used in this paper, along with the corresponding
computational methods.

2.1 Related Work
In this section, we present related work about the software
supply chain and software deprecation mechanisms.

2.1.1 Software Supply Chain
With the emergence of a series of influential software depen-
dency issues, such as left-pad2 and log4j3 incidents, security

2. https://www.sciencealert.com/how-a-programmer-almost-broke-
the-internet-by-deleting-11-lines-of-code

3. https://nvd.nist.gov/vuln/detail/CVE-2021-44228

concerns related to software dependencies have garnered
increasing attention in both academia and industry. Similar
to the supply chain in industrial production, the concept
of the software supply chain is used to analyze security
issues related to software artifacts that have dependencies [1].
Numerous studies have already analyzed the dependency
structures and evolution within various software ecosystems
[14–16]. However, due to the complexity of software supply
chain networks, dependency conflicts may arise, potentially
leading to problems during project building or execution
[17–19]. In a dependency network, a library carrying a
vulnerability affects not only the packages directly dependent
on it but also those packages that indirectly depend on
these libraries [20–23]. Despite upstream libraries releasing
new versions that fix vulnerabilities, downstream packages
typically take a considerable amount of time to incorporate
the patched versions [24–26]. When an upstream library is
no longer maintained and existing vulnerabilities cannot be
addressed, downstream packages may choose to remove
their dependency on the deprecated library and opt for
another more appropriate alternative [27–29].

2.1.2 Deprecation Mechanism
In software systems, there are different levels of deprecation
granularity. Deprecation can occur at the API, release, and
package levels. When developers want to discourage users
from using some APIs, releases, or packages, deprecation
declarations can serve as a communication mechanism with
users, reminding them of the associated risks.

For API-level deprecation, the Rust language provides
the “#[deprecated]” attribute to mark APIs that are not
recommended for use. When other developers depend on
this library and use the deprecated API, the compiler will
issue a warning [30]. For release-level deprecation, Rust’s
package manager, Cargo, provides the yank method to dep-
recate a specific version, rendering that version unusable [31].
However, Rust currently does not offer a direct method to
deprecate an entire software package. Nevertheless, Yanking
all releases can serve as an indirect way to deprecate an
entire package, as it makes all versions unavailable for use.
This is explained in detail in Section 4.1. In contrast, using
“#[deprecated]” is not suitable for indirectly deprecating
an entire package. This is because it requires publishing a
new version of the package that includes the deprecated
API annotation. The code of older versions remains un-
changed, so users depending on those versions will not
receive any warnings. Furthermore, if an API annotated with
“#[deprecated]” is not used in a project, no warning will
be triggered.

Regarding research on API-level deprecation, Robbes et
al. [32] analyzed deprecated APIs in the Squeak and Pharo
software ecosystems, addressing research questions about the
frequency, magnitude, duration, adaptation, and consistency
of the ripple effects caused by API changes. Sawant et al. [33]
conducted semi-structured interviews with 17 third-party
Java API producers and surveyed 170 Java developers. They
found that the current deprecation mechanism in Java and
the proposed enhancements do not meet all the developers’
needs.

In the context of deprecation at the release level, Cogo
et al. [34] studied the usage of deprecated releases in the

3

JavaScript language software ecosystem, finding that 27
percent of all client packages directly adopt at least one depre-
cated release, and 54 percent of all client packages transitively
adopt at least one deprecated release. In their subsequent
study on deprecation at the release level in the Rust ecosys-
tem [35], they found that the yanked releases propagated
through the dependency network resulted in 1.4% of releases
in the ecosystem having unresolved dependencies. Kula et
al. [36] investigated developers’ responsiveness to important
awareness mechanisms, such as new release announcements
and security advisories, in the context of library updates.
They found that as many as 81.5% of systems were still using
outdated versions of libraries.

For deprecated packages, previous studies [7] have shown
that developers may stop developing OSS projects due to
job changes, economic issues, lack of interest, etc. Xia et al.
[37] studied 361 popular GitHub projects that have been
archived, supplementing the reasons for the deprecation
of OSS projects and describing the process of deprecation.
Additionally, there are studies aimed at identifying projects
that are no longer maintained, to assist developers in
assessing the maintenance status of OSS projects [38–40].

Previous research on deprecated packages typically fo-
cused on the projects themselves, while lacking exploration
into how declarations of deprecation affect other packages.
Recently, Zhong et al. [12] and Miller et al. [13] have
conducted studies on deprecated libraries in the Python
and NPM ecosystems, respectively, exploring their impact
on downstream dependencies. However, the deprecation
methods examined in these two studies are not ecosystem-
specific and primarily focus on deprecation practices found
on GitHub. Since different ecosystems adopt different dep-
recation mechanisms, the findings of these studies cannot
be directly applied to research within the Rust ecosystem.
Moreover, neither study explores how developers identify
deprecated libraries and the impact of deprecated libraries
within the software supply chain. Therefore, our study on
deprecated libraries in the Rust software supply chain helps
fill a gap in the existing research on library deprecation.
In Section 7.3, we discuss in detail how the results of our
study differ from prior work and highlight the unique
contributions.

2.2 Dependency Management in Cargo

The official package manager for the Rust programming
language is Cargo4. In a Cargo project, to introduce a
dependency on a third-party library, developers need to
specify the library’s name and its corresponding semantic
versioning specification5 in the project’s configuration file,
i.e., Cargo.toml6. Versioning specifications use symbols
like “∗”, “∧”, and “∼” to define allowed version ranges.
Version numbers follow the MAJOR.MINOR.PATCH format,
representing breaking changes, backward-compatible fea-
tures, and bug fixes, respectively [41]. This structure helps
developers understand the level of change and potential

4. https://doc.rust-lang.org/cargo/guide/why-cargo-
exists.html#enter-cargo

5. https://github.com/steveklabnik/semver
6. https://doc.rust-lang.org/cargo/reference/specifying-

dependencies.html

A@1.4.2 B@3.4.5 C@0.2.1

^3.4.0^1.4.0

L

X@0.0.9

(latest)

Y@0.2.9

(latest)

Z@0.0.2

(old)

Z@0.0.9

(latest)

P@0.3.8

Q@0.1.9

^0.3.3

^0.1.7

(a)

(b)

(c)

Fig. 1: Dependency Relationships Between Packages

impact when updating dependencies. For example, “^1.2.3”
represents a range of “≥ 1.2.3 and < 2.0.0”. If a library
has multiple version numbers that meet the versioning
specification, Cargo will select the highest version that meets
the criteria as a dependency for the project.

2.3 Terminology
Dependency Types: If we consider a specific version (x.y.z)
of a package (P) as a node (denoted as P@x.y.z), then
the various versions of packages will form a dependency
network structure. Figure 1(a) illustrates the dependency
relationships between three packages, A, B, and C. B@3.4.5
depends on A@1.4.2, and C@0.2.1 depends on B@3.4.5. We
refer to these adjacent dependencies as direct dependencies.
For example, B@3.4.5 is a direct downstream package of
A@1.4.2, and A@1.4.2 is a direct upstream Package of
B@3.4.5. Dependencies that are not adjacent are referred
to as transitive dependencies. For example, C@0.2.1 is a
transitive downstream package of A@1.4.2.

Direct Downstream Packages: In the Rust package
management system, if Package B wants to stop depending
on Library A, Package B needs to create a new version
in which Library A is not used. However, in the previous
versions, Package B still depended on Library A. Therefore,
to determine the true direct downstream packages of Library
A at a specific moment, when the highest version of a direct
downstream Package B is currently dependent on Library A,
we consider Package B as the direct downstream package of
Library A at that moment. We consider the highest version
of Package B, which depends on Library A, as the current
latest intent of Package B. In Figure 1(b), X@0.0.9, Y@0.2.9,
and Z@0.0.2 all directly depend on Library L. Versions of
Package X and Y are the highest versions currently, while
the version of Package Z is not the current highest version.
Figure 1(c) shows the dependency situation of the current
highest version of Package Z, where Package Z only directly

4

L

A B C D E

latest version latest version latest version old version old version

Direct Downstream Packages

Historical Dependents

Fig. 2: Direct Downstream Packages of Library L

depends on Libraries P and Q, without a direct dependency
on Library L. Therefore, we consider Package X and Y as
the direct downstream packages of Library L at the moment,
while Package Z is not a direct downstream package of
Library L. In other words, the current number of direct
downstream packages of Library L is 2.

Historical Dependent Count: The number of direct down-
stream packages for a library can vary at different points in
time, and it may not necessarily increase, as some packages
may abandon their dependencies on it. Therefore, having a
small number of current direct downstream packages for a
library does not necessarily imply that it was seldom used
in the past. To reflect the historical usage of a library, we
use “History Dependent Count” to represent the number of
times a library has been directly depended upon by other
packages since its creation. In Figure 1(b), Packages X, Y, and
Z each have a version that directly relies on Library L, so the
History Dependent Count for Library L is 3.

Figure 2 intuitively illustrates the above concept. For
library L, packages A, B, C, D, and E directly depend on
library L. Packages A, B, and C are all in their latest versions,
whereas the latest versions of packages D and E no longer
depend on library L. Therefore, the set of Direct Downstream
Packages for library L consists of packages A, B, and C. The
Historical Dependents of library L include A, B, C, D, and E,
and the Historical Dependent Count of library L is 5.

3 DATASET

As the official package index website for Cargo, crates.io
provides the official database dumps7 of all packages’ meta-
data. With this service, we can easily download the dataset
that details the basic information of Rust packages and their
dependencies. Table 1 describes the key fields in the dataset
that are primarily used in this study, and their respective
descriptions. Our research uses data exported on January 17,
2024, which records basic information of 134,224 packages
and 1,001,235 releases.

To facilitate subsequent data processing, we performed
an inner join on the three tables crates, versions, and
dependencies based on the crate_id and version_id,
creating a new table named crates_dep. This table records
each version of each package’s version dependency range
for every direct upstream dependency. The main fields and
examples are shown in Table 2, which contains a total of
9,068,558 dependency records.

7. https://crates.io/data-access

TABLE 1: Dataset Description

Table Field Description

crates

id The identifier of a package.
readme The content of a package’s README in

crates.io.
repository The URL of a package’s source code repos-

itory.
description The description of a package.
downloads The total number of downloads of the

package as of the time of data collection.

badges attributes The values corresponding to each type of
badge.

crate_id The id of the package that possesses the
badge.

versions

id The identifier of a release.
crate_id The id of the package to which a release

belongs.
created_at The time when a release was published.
yanked The flag indicating whether a release is

deprecated.
num The version name of a release.

dependencies
version_id The id of the release to which this depen-

dency belongs.
req The dependency scope of a release on a

direct upstream package.
crate_id The direct upstream package id that this

dependency points to.

TABLE 2: Field Description of crates_dep Table

Field Name Example Description

name A-Mazed Package name (unique in crates.io)
num 0.1.0 Version number
dep_name rand Name of the direct upstream depen-

dency
req ^0.8.5 Version requirement specification for

the dependency
created_at 2018-06-07 Creation timestamp of the version

4 RQ1: PREVALENCE OF DEPRECATED LIBRARIES

4.1 Method

1. Selection of the libraries studied.8 As of the date of our data
collection, there were a total of 134,224 packages on crates.io,
with 101,610 (75.6%) of packages having their source code
available in GitHub repositories. Since GitHub’s rich open
API and data export capabilities can facilitate the study
of library maintenance status and deprecation declarations,
our experiment chose to investigate libraries having their
source code available in GitHub repositories. Therefore, we
excluded packages that do not provide a GitHub repository
URL. Besides, this study aims to explore the impact of library
deprecation on downstream projects that depended on them,
therefore, we excluded packages that had never been used
by other packages from our study. Never being used by
other packages means that the Historical Dependent Count
of this library is 0. If the name of a certain package appears
in the dep_name field of the crates_dep table (Table 2), it
indicates that the Historical Dependent Count is greater than

8. The method for selecting libraries in this section is specific to RQ1.
In other sections of the paper, the scope of Rust packages is based on all
packages available on crates.io.

5

0, because this package has been depended upon by other
packages. Therefore, it is only necessary to exclude those
packages whose name does not appear in the dep_name
field of the table crates_dep.

As a result, we collected 40,636 packages with no less
than one Historical Dependent Count and open source code
on GitHub as the libraries for our research.

2. Identification of inactive libraries. Before studying
deprecated libraries, we first identify libraries that have not
been maintained for a long time and consider them inactive
libraries, which are potential deprecation candidates. Existing
studies considered OSS projects with no commits for over a
year as inactive [7, 42, 43]. Therefore, following prior studies,
we used the absence of commits for more than one year
as one of the criteria to identify inactive repositories. If a
longer threshold—such as two or three years—were applied,
the stricter filtering would exclude a considerable number
of inactive packages. Specifically, applying two-year and
three-year thresholds would retain only 66% and 42% of
the inactive libraries identified using the one-year threshold,
respectively, which would in turn affect the total number of
deprecated libraries included in our analysis9.

Additionally, different libraries may have different de-
velopment rhythms [44, 45]. If a library takes longer than
expected to release a new version, its development status
may have changed. Inspired by these criteria, we consider
a library to be inactive when it meets both of the following
conditions:

1) We identified repositories with no commits for over a
year by retrieving the last commit timestamps via the
GitHub REST API10.

2) The time since the last release of a new version exceeds
any previous adjacent version release time interval. (This
condition is considered only when this library has at
least two releases.)

To validate the effectiveness of our methods for identify-
ing inactive libraries, in Section 8, we conducted a spot check
on inactive libraries and confirmed that the vast majority do
not become active again.

3. Identification of deprecation-declared libraries. We
examined the following information to confirm whether
these inactive libraries declare deprecation. If a library uses
at least one of the methods mentioned below, we consider it
to be a deprecated library.

First, GitHub and crates.io provide mechanisms as fol-
lows to directly indicate the maintenance status of the library.

1) Archiving in GitHub. GitHub launched the Archive
Feature that allows users to explicitly declare the project
as deprecated and set the repository to a read-only state
[37]. We used the GitHub REST API to determine if a
GitHub repository is in an archived state.

2) Maintenance Badge. Developers of libraries can add
badge-related configurations in the Cargo.toml file to
indicate the maintenance status of the library, such as
maintenance = {status = “actively − developed′′}.
This allows for specifying status badges that can be

9. After a thorough examination, we found that using two- and three-
year thresholds would reduce the number of identified deprecated
libraries to 60% and 54% of the original, respectively.

10. https://docs.github.com/en/rest

displayed on crates.io when the package is published11.
Records related to badges can be obtained from the
data collected in Section 3. We considered that when a
library’s maintenance badge is “deprecated”, it signified
the library had been declared deprecated.

3) Yanking all releases. When a package yanks all of its
releases, none of the versions of the library can be used,
and the package developers can use this method to
voluntarily deprecate the package [35]. We identified li-
braries that yanked all releases using the data introduced
in Section 3 and considered them as libraries deprecated
using this method. It is worth noting that this method
represents an informal deprecation strategy intentionally
adopted by developers, rather than an official technical
mechanism provided by Cargo.

Second, the homepage of GitHub and crates.io provide
description information and the content of README for the
project, allowing developers to publish information related
to the maintenance status of the project at these locations
to inform users of the current status of these projects. We
used the GitHub REST API to obtain the description on
the GitHub homepage and the content of the README file.
The description content on the crates.io homepage and the
content of the README file can be obtained from the data
collected in Section 3.

After obtaining the text content at these four locations
for all inactive libraries, we filtered the text at these four
locations using keywords such as ’deprecate’, ’discontinue’,
’archive’, ’abandon’, and similar terms, including their
root forms and variations, to select text containing these
keywords. We provided the full list of keywords in our
online appendix12. Subsequently, the first two authors of the
paper judged whether these filtered texts could indicate the
maintenance status of the library. Developers can explicitly
declare deprecation by including relevant text descriptions in
the description or README, such as: “This crate is deprecated
in favor of [another Rust crate name].” We could determine
whether it is deprecated by analyzing the semantic meaning
of the text. Additionally, in the README, some developers
used deprecation badges to indicate abandonment, such as
a badge labeled “No Maintenance Intended.”13 When we
identified such badges in the README, we also considered
the content as confirmation that the corresponding library
was deprecated.

Sometimes, the deprecation-related descriptions in the
description or README are not clearly stated. For example,
some libraries claim to be “soft-deprecated.” In these special
cases, the judgments of the two authors might differ. When
discrepancies arose, the two raters reached a consensus by
analyzing relevant information such as the library’s commits
and issues. The Cohen’s kappa coefficient of agreement
between them was 0.89, indicating a high level of consistency.
Finally, we separately tallied the number of libraries declared
deprecated at these four locations.

4. Calculation of Direct Downstream Packages Count.
To determine the number of direct downstream packages of a

11. https://doc.rust-lang.org/cargo/reference/manifest.html#
the-badges-section

12. https://doi.org/10.5281/zenodo.15266092
13. https://unmaintained.tech/

https://docs.github.com/en/rest
https://doc.rust-lang.org/cargo/reference/manifest.html#the-badges-section
https://doc.rust-lang.org/cargo/reference/manifest.html#the-badges-section
https://doi.org/10.5281/zenodo.15266092

6

library L at a given time T , we extracted all packages whose
latest versions prior to T declared a direct dependency on
L, based on records in Table 2. We then removed duplicates
by package name to ensure each package was counted only
once. The final count of unique package names represented
the number of direct downstream packages of L at time T .

5. Calculation of Historical Dependent Count. To
compute the Historical Dependent Count of a library L at
time T , we used the crates_dep table (Table 2) to obtain all
packages that had declared a direct dependency on L before
T . We then extracted the unique package names, and the
number of these distinct packages represented the Historical
Dependent Count of L at time T .

4.2 Results
Among the 40,636 open source Rust libraries that host their
repositories on GitHub, we identified a total of 13,289 inactive
libraries. It means that 32.7% of open source Rust libraries
have ceased receiving code changes for over a year. The blue
line in Figure 3 shows the change in the proportion of inactive
libraries, measured as the number of inactive libraries relative
to the total number of packages whose repositories were
hosted on GitHub each month from January 2017 to January
2024. The figure illustrates that as the number of packages
stored on crates.io increases, the number of libraries that
have ceased receiving commits also rises. Moreover, the
proportion of these inactive libraries is growing over time.

2017 2018 2019 2020 2021 2022 2023 2024

0.05

0.10

0.15

0.20

0.25

0.30

In
ac

tiv
e

Lib
ra

rie
s'

Pr
op

or
tio

n

0

5000

10000

15000

20000

25000

30000

35000

40000

Nu
m

be
r o

f D
ire

ct
 D

ow
ns

tre
am

 P
ac

ka
ge

s

Number of Direct Downstream Packages
Inactive Libraries' Proportion

Fig. 3: Trend of Inactive Libraries and Their Direct Down-
stream Packages

The red line in Figure 3 illustrates the number of di-
rect downstream packages of these inactive libraries from
2017 to 2024. It indicates that over time, more and more
packages have incorporated inactive libraries. Specifically, as
of January 17, 2024, the number of Rust packages that are
dependent on inactive libraries has reached 38,808.

Among the 13,289 inactive libraries, a total of 1,468
libraries declared themselves deprecated using at least one of
the seven methods. The specific usage numbers of these
seven methods are shown in Figure 4. Among all the
deprecation methods, archiving the GitHub repository is
the most widely used, with a total of 1,167 (8.8%) libraries
using this method to actively deprecate their repositories.
Additionally, a library may use multiple methods to declare

Archiving in GitHub

Yanking all releases

Maintenance Badge

README in GitHub

Description in GitHub

README in crates.io

Description in crates.io

199

77

322

102

104

55

1167

Fig. 4: Number of Libraries Using Each Deprecation Method

TABLE 3: Comparison of Download Count Between Dep-
recated and Non-Deprecated Libraries Among Inactive
Libraries

Metric Libraries with Depre-
cation Declarations

Libraries without Dep-
recation Declarations

mean 3.2× 105 5.1× 105

min 7.8× 101 1.1× 102

Q1 1.5× 103 1.3× 103

Q2 4.3× 103 3.6× 103

Q3 2.3× 104 1.7× 104

max 2.9× 107 2.7× 108

deprecation. For example, a total of 28 libraries have used
Archiving in GitHub, README in GitHub, and Description in
GitHub to declare their deprecation.

Table 3 presents a comparison of download counts be-
tween 1,468 deprecated libraries and 11,821 non-deprecated
libraries among a total of 13,289 inactive libraries. We use
Download Count as an indicator of a library’s popularity,
and employ the mean, minimum, maximum, and quartiles
(Q1, Q2, Q3) to illustrate the data distribution. We used
the Mann-Whitney U Test [46] to compare the statistical
differences between deprecated and non-deprecated libraries
in terms of download count. We calculated Cliff’s delta (d)
to illustrate the effect size of the differences between the
data. The results show that deprecated and non-deprecated
libraries exhibit negligible effect sizes14 in download count (d
= -0.05). This suggests that there is no significant difference in
popularity between deprecated and non-deprecated libraries.
Despite prolonged inactivity, only 11% of libraries explicitly
declare deprecation, leaving the maintenance status of most
packages ambiguous to users.

Summary for RQ1: In all the 40,636 open source Rust
libraries, we identified 13,289 (32.7%) inactive ones,
which are widely utilized by 38,808 packages and
play a critical role in the Rust ecosystem. However,
only 11% of the inactive libraries have declared
their deprecation on crates.io or GitHub. It brings
uncertainty to users whether the majority of the
remaining inactive libraries are still being maintained.

14. An effect size can tell us how large this difference is. As suggested
in [47], we interpret the effect size value to be negligible for |d| < 0.147,
small for 0.147 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474 and large
for |d| ≥ 0.474.

7

5 RQ2: IMPACTS OF DEPRECATION DECLARATION

5.1 Method

We examined the impact of deprecation declarations on
their users by calculating the changes in direct downstream
packages of the library.

1. Selection of study subjects. Compared to other dep-
recation methods, yanking all releases is a more manda-
tory approach. It renders all library versions unavailable,
causing issues during the build process when this library
is introduced into a project. In contrast, other deprecation
methods only provide warnings, which might not be noticed
unless specifically checked in the corresponding locations.
Therefore, we divided the seven deprecation methods into
two groups for our study. The first group, called yanked_lib,
includes libraries deprecated through yanking all releases.
The second group, called declared_lib, includes libraries
deprecated using at least one of the other five methods, i.e.,
REAMDE in crates.io, Description in crates.io, README
in GitHub, Maintenance Badge, Archiving in GitHub. We
excluded libraries deprecated only through a GitHub de-
scription because we could not determine the exact time of
deprecation, and there were only 16 such libraries, with an
average of one direct downstream package. Therefore, we
deemed that excluding them did not significantly impact the
results.

To avoid situations where downstream libraries do not
have enough time to react due to a short deprecation period,
we excluded libraries from the yanked_lib and declared_lib
sets where the deprecation duration (the time from the
deprecation point to the data collection time) is less than
6 months. This led to the exclusion of 2 libraries from
yanked_lib and 150 libraries from declared_lib. Ultimately,
yanked_lib contains 197 libraries, and declared_lib contains
1,019 libraries.

2. Retrieving the deprecation declaration time. For
libraries deprecated through yanking all releases and those
with a deprecation notice in the README on crates.io, we
obtained the deprecation time from the data exported from
crates.io. For the Maintenance Badge and Description in
crates.io methods, the corresponding fields were recorded
in the Cargo.toml file. We identified the earliest version in
the Cargo.toml file where the deprecation notice was added
and used the release date of that version as the deprecation
date. For libraries that declare deprecation in the README
on GitHub, we check the commit history of the README.md
file to identify when the deprecation declaration was added.
Lastly, by scraping the GitHub homepage of archived li-
braries, we could obtain the time when the archive status
was applied. Libraries in the declared_lib group may use
more than one method to declare deprecation. In this case, if
the corresponding deprecation times differed, we chose the
earliest time as the official deprecation declaration time for
that library.

3. Calculation of downstream package changes. There
are three types of changes in the set of direct downstream
packages of a certain library l between time t1 and a
subsequent time point t2. We introduce each type as follows.

• Packages that were dependent on library l at time t1
abandon their dependency by time t2. We define the

collection of these packages that have abandoned their
dependency as del_pkgt1−t2.

• Packages that were dependent on library l at time t1
continue to maintain their dependency on library l at
time t2. We define the collection of these packages that
persist in their dependency as stay_pkgt1−t2.

• Packages did not depend on library l at time t1 but have
established a dependency on library l by time t2. We
define the collection of these newly dependent packages
as add_pkgt1−t2.

We denote the set of all direct downstream packages of a
certain library at a specific time t as ddp_sett. We calculated
each deprecated library’s set of direct downstream packages
at deprecation declaration time, denoted as ddp_setstop.
The calculation method for direct downstream packages
is described in Section 2.3. Subsequently, we computed the
set of direct downstream packages of each deprecated library
at the time of data collection (January 17, 2024), labeled
as ddp_setnow. The calculation methods for each library’s
del_pkgs−n, stay_pkgs−n, and add_libs−n (the subscripts
s and n represent “stop” and “now” respectively) are as
follows (the minus sign denotes the set difference):

del_pkgs−n = ddp_setstop − ddp_setnow

stay_pkgs−n = ddp_setstop ∩ ddp_setnow

add_pkgs−n = ddp_setnow − ddp_setstop

We got ddp_setstop, del_pkgs−n, stay_pkgs−n, and
add_pkgs−n for each library in yanked_lib and declared_lib.
This allows us to gain insights into how the number of
downstream dependencies changed for each library after it
declared deprecation.

4. Identifying alive packages. For the set of direct
downstream packages at the time of deprecation for each
library, we want to determine how many packages are still
“alive” in order to calculate the proportion of packages that
had the opportunity to replace the deprecated library but did
not. From the packages in ddp_setstop, we chose those that
released a new version after their direct upstream library
was declared deprecated. These packages were then grouped
into a new set called alive_ddp_setstop, which represents
the number of direct downstream packages that were still
well-maintained when the upstream library was deprecated.

5. Assessing the effectiveness of deprecation declarations.
Regardless of the deprecation declaration, direct downstream
libraries may stop depending on the deprecated library for
various reasons, such as dissatisfaction with its functionality
or insufficient maintenance [37]. What we aim to understand
here is whether the act of declaring a library as deprecated
facilitates developers’ decisions to stop using it. Additionally,
we also want to examine whether such declarations help pre-
vent new packages from adopting these deprecated libraries.
These questions need to be addressed by showing statistical
differences in the data before and after the deprecation
announcement.

Specifically, we compared the number of newly added
downstream packages (add_pkg) and the number of removed
downstream packages (del_pkg) in the N months before and
after the deprecation declaration. In this experiment, we
set N to 2, 4, and 6 months as the time window. We did

8

TABLE 4: Changes in Direct Downstream Packages of Two Categories16

Categories # libraries # ddp_setstop # alive_ddp_setstop # del_pkgs−n # add_pkgs−n # stay_pkgs−n

declared_lib 1,019 7,432 2,300 1,405 1,783 6,027
yanked_lib 197 242 29 29 0 213

TABLE 5: Mann-Whitney Test (p-value) and Cliff’s Delta (d) for N Months Before and After Deprecation15

Month del_pkg add_pkg

p-value d p-value d

2 0.74 −3.8× 10−3 (negligible) 1.2× 10−2 0.025 (negligible)
4 0.36 −1.3× 10−2 (negligible) 3.3× 10−5 0.054 (negligible)
6 0.44 −1.1× 10−2 (negligible) 2.6× 10−7 0.078 (negligible)

not choose overly short observation windows to reduce the
impact caused by the direct downstream libraries not having
sufficient time to remove deprecated libraries. In this section,
we chose deprecated libraries with the same deprecation
declaration methods as those in declared_lib as our research
subjects. These libraries form the set compared_lib. For each
N , we selected libraries from the compared_lib set whose
creation-to-deprecation time was greater than N months and
whose deprecation duration (the time from the deprecation
point to the data collection time) was longer than N . We
then calculated the ddp_set for these libraries at three time
points: N months before the deprecation declaration, N
months after the deprecation declaration, and at the time of
the deprecation declaration. Subsequently, we calculated the
number of direct downstream packages that were removed
(del_pkg) and added (add_pkg) for each library, using the
same method as described in Step 3 in this section.

We used the Mann-Whitney test [46] to compare the
statistical significance of the differences in del_pkg between
the N months before and after deprecation. The same test
was also applied to add_pkg. We calculated Cliff’s delta (d)
14 to illustrate the effect size of the differences between the
data. The results of these calculations are shown in Table 515.

5.2 Results

We summed the values of ddp_setstop, alive_ddp_setstop,
del_pkgs−n, stay_pkgs−n, and add_pkgs−n for all libraries in
the declared_lib category, and performed the same operation
for the yank_lib category, resulting in the data presented in
Table 416. It shows how the direct downstream packages in

15. The data under the del_pkg column represent the statistical
comparison between direct downstream packages that abandoned the
dependency within N months before the deprecation declaration and
those that abandoned it within N months after the declaration.

The data under the add_pkg column represent the statistical com-
parison between direct downstream packages that newly added the
dependency within N months before the deprecation declaration and
those that newly added it within N months after the declaration.

16. #librarie represents the total number of libraries in each Category.
#ddp_setstop denotes the total number of direct downstream packages
of the libraries in each Category at the time of deprecation declarations.
#alive_ddpstop refers to the number of alive direct downstream pack-
ages in each Category at the time of deprecation declarations (as defined
in Section 5.1.4). #del_pkgs−n, #add_pkgs−n, and #stay_pkgs−n

represent, respectively, the number of direct downstream packages that
abandoned the dependency, newly added the dependency, or retained
the dependency from the time of deprecation declaration to the time of
data collection (as defined in Section 5.1.3).

these two categories changed overall after the libraries were
deprecated.

Downstream packages of Libraries in yanked_lib. As
shown in Table 4, there are 197 libraries in the yanked_lib
category that have been deprecated by yanking all their
releases. These libraries had a total of 242 direct downstream
packages, of which only 29 were “alive”. After these libraries
yanked all their releases, by the time of data collection, all 29
alive downstream packages had removed their dependency
on these libraries, and no new packages chose to depend
on them. This data demonstrates that yanking all releases
is indeed a very drastic deprecation measure. Libraries
using this method become unavailable, effectively forcing
downstream packages to remove them. This approach is
suitable for libraries with significant defects, as it effectively
prevents both existing and new users from using them.

We examined the code repositories of these 29 packages
that removed their dependencies on deprecated libraries by
analyzing the commit history of their Cargo.toml files. We
found that all of them identified the deprecated libraries in
use and replaced them. For example, echonet-lite originally
depended on the bare-io library. After bare-io was deprecated
by yanking all releases, echonet-lite chose to replace it with
core2, explicitly mentioning in the commit message: “use
core2 because bare-io is yanked.”17

Existing Cargo projects will generate a Cargo.lock file to
save resolved dependencies, so projects that have already
been built can still use libraries with all releases yanked,
allowing some leeway for developers to replace these dep-
recated libraries. However, for any new projects that do not
have a pre-existing lock file, using libraries with all releases
yanked still poses serious issues, leading to dependency
resolution failures18. These problems also affect the transitive
downstream packages of the deprecated libraries, causing
broader risks across software supply chains. As shown in
Figure 5(b), there are currently 164 packages (after dedupli-
cation of the 213 packages in the stay_pkg collection) that
depend on libraries where all releases have been deprecated.

17. https://github.com/tomoyuki-nakabayashi/echonet-lite-rs/
commit/b3e0901b30de74647aa7419d314ab3c2328e6c94

18. https://doc.rust-lang.org/cargo/commands/cargo-yank.html

https://github.com/tomoyuki-nakabayashi/echonet-lite-rs/commit/b3e0901b30de74647aa7419d314ab3c2328e6c94
https://github.com/tomoyuki-nakabayashi/echonet-lite-rs/commit/b3e0901b30de74647aa7419d314ab3c2328e6c94
https://doc.rust-lang.org/cargo/commands/cargo-yank.html

9

Additionally, these 164 packages are release-active19. These
164 packages have a total of 93 direct downstream packages.
Because these downstream packages indirectly depend on
libraries with all releases yanked, their builds will encounter
issues.

1,019 libraries 954 packages

declared_lib release-active

4,691 packages

directly depend on directly depend on

197 libraries 164 packages

yanked_lib release-inactive

93 packages

directly depend on directly depend on

(a)

(b)

Fig. 5: Dependency Chain of Libraries in the declared_lib
and yanked_lib sets19

Downstream packages of libraries in declared_lib. For
the 1,019 libraries in the declared_lib category, when they
were declared deprecated, there were a total of 7,432 direct
downstream packages, including 2,300 alive packages. By the
time of data collection, 1,405 (61.1%) of these alive packages
chose to abandon their dependency on the deprecated
libraries, while 38.9% of the alive packages continued to use
the deprecated libraries in their new versions. Furthermore,
1,783 new packages have opted to use these libraries even
though they have been declared deprecated. This indicates
that many package developers either were unaware that they
were using deprecated libraries or, for some reason, knew the
libraries were deprecated but still chose to continue using
them. This issue will be further researched in Section 6.

Figure 6 illustrates the number of newly added direct
downstream packages (the red dashed line) and the number
of packages that stopped depending on deprecated libraries
(the blue solid line) during each of the first six months
following the deprecation declaration. The trends of the red
and blue lines indicate that both the number of new users
and the number of downstream packages discontinuing use
of deprecated libraries decline over time. The number of
users who chose to remove deprecated libraries was highest
in the first month after the deprecation declaration. However,
some packages only removed the deprecated libraries after a
longer period, such as five to six months later.

To investigate whether specific risks have been identified
in these 1,019 already deprecated libraries, we searched the
Open Source Vulnerabilities Database (OSV)20 for unresolved
vulnerabilities caused by libraries from the declared_lib set.
Table 6 shows the number of libraries in the declared_lib set of
1,019 that produce vulnerabilities at each severity level21, as
well as the number of Direct Downstream Packages affected

19. In RQ2, “inactive” has a different meaning than in RQ1, as the
downstream packages analyzed were drawn from all crates.io packages,
many of which lack GitHub links. As a result, we use a simplified
classification based on release activity: release-inactive packages had no
new versions in the year before data collection ended, while release-active
ones released at least one version during that period.

20. https://osv.dev/list?ecosystem=crates.io
21. The severity level definition of vulnerability comes from the

Common Vulnerability Scoring System (CVSS, https://www.first.org/
cvss/v3-0/specification-document#Qualitative-Severity-Rating-Scale).

1 2 3 4 5 6
Months Since Deprecation Declaration

50
75

100
125
150
175
200
225
250

Nu
m

be
r o

f P
ac

ka
ge

s

Number of Added Direct Downstream Packages Each Month
Number of Removed Direct Downstream Packages Each Month

Fig. 6: Number of Direct Downstream Packages in the six
months after the Deprecation of Libraries in declared_lib.

TABLE 6: Number of Direct Downstream Packages Affected
by Deprecated Libraries in declared_lib

Severity # Libraries # Direct Downstream Packages

critical 2 1,906
high 3 5
undefined 23 3,375

by these libraries. In the OSV database, not all vulnerability
records include a severity level. Therefore, the category for
vulnerabilities without a specified severity level is labeled as
“undefined” in Table 6.

As shown in Table 6, although only two deprecated
libraries contain critical severity defects, these two libraries
affect 1,906 Rust packages. Specifically, these two vulnera-
bilities are CVE-2020-2557522 and CVE-2020-3588023, which
occur in the failure24 and bigint 25 libraries, respectively.
The critical vulnerability in failure introduces potential type
confusion flaws during downcasting, as well as compatibility
hazards in certain applications.26 In contrast, the critical
vulnerability in bigint contains several instances of undefined
behavior, including the use of uninitialized memory and
out-of-bounds pointer access.27 The issues present in both
libraries can potentially lead to severe runtime problems
in their downstream packages. Since these libraries have
been deprecated, their publicly known issues cannot be fixed,
leaving thousands of dependent packages at risk.

We further studied the 6,088 packages that still rely on
these deprecated libraries (i.e., the result of deduplicating
the 6,027 packages in the stay_pkg collection and the 1,783
packages in the add_pkg collection). We found that only 954
(15.7%) of these packages have released new versions in
the past year. These 954 packages are marked as release-
active19 in Figure 5(a). This means that most of the packages
still relying on deprecated libraries are not actively main-
tained themselves. Additionally, the total number of direct
downstream packages that depend on these 954 packages is
4,691. This indicates that for the developers of these 4,691
packages, the libraries they directly depend on are actively

22. https://nvd.nist.gov/vuln/detail/CVE-2020-25575
23. https://nvd.nist.gov/vuln/detail/CVE-2020-35880
24. https://crates.io/crates/failure
25. https://crates.io/crates/bigint
26. https://rustsec.org/advisories/RUSTSEC-2019-0036.html
27. https://github.com/advisories/GHSA-wgx2-6432-j3fw

https://www.first.org/cvss/v3-0/specification-document#Qualitative-Severity-Rating-Scale
https://www.first.org/cvss/v3-0/specification-document#Qualitative-Severity-Rating-Scale

10

maintained, but in reality, their packages indirectly introduce
deprecated libraries. Figure 5(a) visually illustrates the above
phenomenon, showing that the declaration of deprecated
libraries in the supply chain is “hidden” due to the presence
of intermediary libraries.

Effectiveness of deprecation declarations. For the case
of 2 months (N=2), we selected 1,056 libraries from the
compared_lib set that met the criteria. During the 2 months
before their deprecation declaration, a total of 233 direct
downstream packages ceased using them. In the 2 months
following their deprecation, a total of 280 direct downstream
packages stopped using these deprecated libraries. Although
there are more direct downstream packages that discontinued
their dependency on deprecated libraries in the two months
after the deprecation declaration (280 vs. 233), there is no
significant difference in the overall distribution regarding
whether the deprecation declaration led existing users of
the library to stop using it (p-value of 0.74, which is greater
than 0.05). When N takes other values, similar results are
observed. The results suggest that deprecation notices may
fail to reach existing users effectively.

Regarding the effect of deprecation declarations on
preventing new packages from adopting deprecated libraries,
the results in Table 5 indicate a statistically significant
difference between deprecated and non-deprecated libraries
in terms of new downstream packages (p-values significantly
less than 0.05 for all months we measured). For example,
in the four months prior to deprecation, 740 new direct
downstream packages were added, whereas this number
dropped to 514 in the four months after deprecation. The
add_pkg count thus shows a decline following the depre-
cation declaration. However, the effect size is negligible,
suggesting that while the signal is not entirely ignored by
developers, its practical impact on developer behavior is
minimal. One possible explanation for the observed, albeit
small effect, is that some potential adopters may check a
library’s homepage before adoption, notice the deprecation
warning, and decide not to adopt the library. Nevertheless,
the current measures remain insufficient in effectively notify-
ing developers, highlighting the need for more robust and
standardized deprecation communication mechanisms.

Summary for RQ2: Yanking all releases is a coercive
deprecation method that effectively forces all alive
downstream packages to abandon their dependencies
on deprecated libraries. Other deprecation declara-
tions serve merely as warnings and fail to trigger
downstream updates effectively, as 61.1% of alive
packages continue to rely on the deprecated libraries.
More actionable mechanisms for communicating
deprecation status are needed.

6 RQ3: REASONS FOR DEVELOPERS USING DEP-
RECATED LIBRARIES

In RQ2, we found that despite 1,019 libraries being declared
deprecated, many active packages still rely on these libraries.
To understand the reasons behind this and how Rust devel-
opers currently become aware of the presence of deprecated

libraries in their projects, we analyzed first-hand information
by surveying developers.

6.1 Method
To improve the response rate of the questionnaire, we
targeted Rust packages that are still under maintenance
and depend on deprecated libraries. The filtering process
was as follows: in RQ2, the declared_lib set contained a
total of 1,019 deprecated libraries. We obtained all direct
downstream packages of these 1,019 deprecated libraries at
the data collection point (following the method described in
Section 4.1.4). From these direct dependents, we then filtered
out the packages that had released a new version during
2023, resulting in a final set of 1,006 packages.

Among these 1,006 packages, we found public emails of
the owners for a total of 546 libraries. We sent our survey
invitation via email to the owners of these libraries. In the
invitation email, we first revealed that the project [Project-
Name] they are involved in maintaining, is using a deprecated
library [Library-Name], then invited them to answer our
survey, which mainly contains the following questions:

1) How long have you been involved in Open Source
Software?

2) How long have you been using Rust?
3) In your past development experiences, how have you

come to know about the presence of deprecated libraries
in the project?

4) Since the project you are highly involved in relies on a
deprecated library, could you tell us the reason for this?

We also informed the research aim of this study and the
anonymous way of response handling policy in the inviting
letter to ease the ethical concern. The survey passed the
review by the ethics board at our university. One month
after sending the questionnaire to these 546 developers,
we received a total of 53 responses. The response rate was
9.7%, higher than the typical 5% response rate for software
engineering-related surveys [48]. To protect the anonymity
of the survey participants, we used tags P1 to P53 to identify
these participants. In the results, we will reference some
of the participants’ answers, and when referring to specific
package names, we will use [Package-Name] instead.

Figure 7 shows the duration of respondents’ involvement
in OSS development and Rust development. 86.8% of the re-
spondents have over three years of experience in open source
development, and 60.4% have over 3 years of experience as
Rust developers. This means most of the respondents have
extensive experience in Rust and open source development.

OSS Development

1.9%
11.3%

86.8%

Rust Development

7.5%

32.1%
60.4%

3 months to 1 year
1 year to 3 years
more than 3 years

Fig. 7: Participants’ experience in OSS and Rust Development,
respectively.

We organized and analyzed the responses to the open
questions in the survey using thematic analysis [7, 49]. Two

11

authors of this paper independently assigned an initial
code to each response and identified themes within the
assigned codes. For example, we extract the code “didn’t
receive any deprecation warning” from a participant’s response,
which generates the corresponding theme “unawareness of
deprecation”. After generating corresponding themes for all
responses, we merge similar themes to obtain the final results.
For the analysis of the third and fourth questions, the Cohen’s
kappa coefficient of agreement between the two authors was
0.82. In cases where the first two authors have different
perspectives, these differences are resolved through a face-
to-face meeting.

6.2 Results

Ways developers have historically discovered deprecated
libraries. Among the 53 respondents, a total of 41 developers
indicated that they have experience in discovering depre-
cated libraries.28 Table 7 shows how these 41 participants
found deprecated libraries in projects during their past de-
velopment experiences. Note that a participant can mention
multiple methods, and 12 participants indicated that they
had no relevant experience. Based on the responses of these
experienced developers, it can be observed that within the
current open source ecosystem, Rust developers can actively
or passively become aware of the presence of deprecated
libraries in projects through various channels of information.

Table 7 indicates that in addition to checking the library’s
GitHub and crates.io pages, developers can also use the
“cargo audit” command and Dependabot to identify deprecated
libraries within their projects. These two tools use the
RustSec Advisory Database (RAD) [50] and the GitHub
Advisory Database (GAD) [51] as their respective data
sources. We downloaded the data as of January 17, 2024
to examine how many deprecated libraries are recorded
in these two databases. Similar to the approach in RQ1,
we utilized keywords related to deprecation to filter the
“summary” and “details” fields of each risk record in these
two databases. Subsequently, two authors of this paper
individually examined each filtered record to determine if it
documented deprecated libraries. Discrepancies in analysis
results were resolved through discussion to reach a consensus
(Cohen’s kappa coefficient of agreement between them was
0.84). Before the data collection date, RAD and GAD only
documented 85 and 4 deprecated Rust packages, respectively.
Therefore, using the “cargo audit” command or Dependabot
can only uncover a small fraction of deprecated libraries,
rendering their actual effectiveness quite limited.

Reasons developers use abandoned libraries. Table 8
displays four major categories of reasons why developers
continue to use deprecated libraries. The last column shows
the number of responses for each major category. Among the
major categories of reasons, the insightful specific reasons
are listed in the “Specific Reasons Mentioned in Responses”
column. The number in parentheses following each specific
reason indicates how many developers mentioned it. A

28. This investigation solely focuses on whether developers have had
similar experiences, which is independent of whether they discovered
the particular deprecated libraries mentioned in the email. A total of 41
developers shared their experiences of discovering deprecated libraries,
while the other 12 developers indicated that they had no such experience.

participant’s response may mention multiple specific reasons
within its associated category. It’s also possible that no spe-
cific reasons are mentioned. Therefore, for a given category,
the sum of the numbers in parentheses in the Specific Reasons
Mentioned column may be smaller than the value in the last
column. For example, P15 simply responded, “I learned only
now the lib was deprecated.” This indicates that the developer
was previously unaware of the deprecation (and thus the
response falls under Unawareness of deprecation), but it
does not specify the concrete reason why the developer was
unaware. Consequently, P15’s response does not belong to
any specific item in the Specific Reasons Mentioned column.

The detailed descriptions of these four categories are
listed below based on their popularity:

R1. Unawareness of library deprecation (29, 54.7%).
The most commonly cited reason for using deprecated
libraries is that the package developers are unaware that
the package uses deprecated libraries. Despite these libraries
being declared deprecated, using them has not caused any
issues. Additionally, users of these libraries have not received
any notifications from Cargo or GitHub. For example, P15
mentioned, “Deprecation warnings aren’t emitted by any tool
I use there ...” and P27 wrote, “I don’t recall any notification
of this library being deprecated.” Two respondents indicated
that they were unaware of existing automated methods for
detecting deprecated libraries. For example, P41 stated, “I’m
not aware of any automated way to detect unmaintained/deprecated
crates/dependencies.”

250 500 750 1000 1250 1500 1750 2000 2250

days 1354.0

Fig. 8: Number of Days Since Deprecation for Libraries Used
by the Respondents’ Package.

We calculated the duration of deprecation for each
deprecated library mentioned in our emails that was used
by the respondents (measured as the number of days from
the deprecation declaration to the data collection date). The
results are presented in the form of a boxplot in Figure 8.
The shortest deprecation period for the libraries used by
these respondents is 337 days, indicating that the deprecated
libraries used by the respondents have been obsolete for a
significant amount of time.

We examined the projects maintained by the respondents
and confirmed that all of these projects had released new ver-
sions after the libraries they used were declared deprecated.
This indicates that the projects remained active after the
deprecation declarations, and the developers had opportuni-
ties to replace the deprecated libraries. However, the results
show that despite the deprecation being declared for a long
time, 54.7% of the developers were still unaware that their
projects contained deprecated libraries. This suggests that
existing deprecation declaration methods are still insufficient
for effectively notifying users of deprecated libraries.

Among the 29 respondents who were unaware of the
presence of deprecated libraries in their projects, 3 explic-
itly stated in their responses that they would remove the
deprecated libraries. For example, P51 mentioned, “I will
fix it as soon as I find the time for it.” This indicates that if

12

TABLE 7: Ways to Discover Deprecated Libraries in Projects

Methods Description # Response
Checking the library’s home-
page on crates.io

Developers determine if the library is deprecated by examining its homepage
on crates.io.

27

Checking the library’s home-
page on code hosting platforms

Developers determine if the library is deprecated by examining its homepage
on its code hosting platforms (such as GitHub).

21

Using “cargo audit” command Cargo provides the “cargo audit” command to check a project’s dependencies
for known security vulnerabilities. This command can detect deprecated
libraries in a project based on the RustSec Advisory Database [50].

18

Other developers submitted Is-
sues or Pull Requests to notify

For open source projects on platforms like GitHub, when users of a project
discover that deprecated libraries are being used, they can alert the project
maintainers through Issues or Pull Requests.

15

Configuring dependabot By configuring dependabot for projects on GitHub, it can check for
deprecated libraries in projects based on the GitHub Advisory Database [51].

2

TABLE 8: Reasons for Developers Using Deprecated Libraries

Categories Specific Reasons Mentioned in Responses # Response
Unawareness of deprecation 1) The maintainer has not received any relevant warnings from Cargo or

GitHub. (3)
2) The maintainers are unaware of the methods for automatically detecting
deprecated libraries. (2)

29

Insufficient time and resources
for library replacement

1) Replacing the library requires considerable work. (3)
2) Replacing the library is not the top priority in the current project. (1)

12

No need for replacement 1) Using deprecated libraries has not caused any problems. (5)
2) The deprecated library is used for testing. (1)
3) The deprecated library is used only for a very minor functionality. (1)
4) The mechanism on which the deprecated library depends is relatively
simple. (2)

10

No appropriate alternative 1) Similar libraries are also not actively maintained. (1)
2) Similar libraries can’t fully replace current ones. (1)

2

deprecation declarations can more effectively notify users of
deprecated libraries, they could better encourage developers
to stop using them.

R2. Insufficient time and resources for library replacement
(12, 22.6%). Three developers indicate that even though
they are aware of deprecated libraries in their projects,
replacing them would require a significant amount of time
and effort, potentially introducing a series of new issues
to the project. For example, P4 mentioned, “[...] changing it
would further require possible debugging and new issues that we
do not have the bandwidth to handle right now.” P24 also states
that replacing deprecated libraries is not the most critical
task at the moment, as the package has more urgent tasks
to complete. P24’s response mentioned, “The most important
thing about this project at the moment is not about it, but it may
be in the future.”

R3. No need for replacement (10, 18.9%). Five developers
believe that even though a library is no longer maintained,
using the deprecated library has not caused any issues so
far, so there is currently no need to replace it. They prefer
to wait until a real problem arises before removing the
deprecated library from the project. For example, P12 stated,
“Deprecated does not mean it’s not working. It does what I need,
I’ll change it if/when it breaks.” P21 considers it acceptable to
use deprecated libraries for testing purposes. P21’s response
mentioned, “It is only used in the test suite. [...] Even if an

attacker got access through the dependency, it won’t be able to
do anything.” Some developers believe it’s acceptable to use
deprecated libraries in projects when these libraries play a
minor role or if the design mechanisms of the library are
relatively simple. For example, P48 mentioned: “I use the
[Package-Name] whose underlying mechanisms are simple and
unlikely to need maintenance updates.”

R4. No appropriate alternative library (2, 3.8%). Some
developers are unable to find an appropriate library to
replace the deprecated library they are currently using,
which reduces their willingness to remove the deprecated
library. For example, P34 mentioned, “Out of the 2 libraries
currently reported as ‘maintained’ replacements, one is just as
much unmaintained [...]. The other one is not a 1:1 replacement
and requires additional work without any clear benefits.”

The results in Table 7 and Table 8 provide a strong
explanation for our findings in RQ2, namely that most of the
maintained packages continue to rely on upstream libraries
even after those libraries have been formally deprecated.
Currently, Rust developers still largely depend on actively
searching for information to discover deprecated libraries,
while existing automated detection mechanisms remain
very limited in effectiveness. As a result, many users of
deprecated libraries fail to identify and remove them in a
timely manner. Even when some developers are aware that
they are using deprecated libraries, they may not remove

13

them due to practical reasons such as a lack of time or
suitable alternatives. Taken together, these findings indicate
that continued downstream reliance on deprecated libraries
is not only a technical phenomenon but also a socio-technical
one, driven by awareness gaps, prioritization trade-offs, and
ecosystem limitations.

Summary for RQ3: Rust developers can check the
homepage of libraries on crates.io and GitHub, or
utilize tools provided by Cargo and GitHub to
determine whether deprecated libraries exist in their
projects. Nevertheless, unawareness of library depre-
cation remains the most cited reason why many Rust
developers use deprecated libraries. These findings
provide an indicative understanding of why depre-
cated libraries persist in Rust projects.

7 IMPLICATIONS

Building upon our findings, in the remaining part of this
section, we will elaborate on the insights and implications
of our experimental results from the perspectives of package
managers, open source code hosting platforms, and future
research.

7.1 Implications for Maintainers of Package Managers
Improving the effectiveness of existing deprecated library
detection tools. Our findings diagnose a major breakdown
in information dissemination: unawareness about deprecated
libraries is the primary reason for their continued use. This
indicates that, within the current ecosystem, the information
published by libraries does not effectively reach their users.
Although it is possible to receive deprecation alerts by
configuring Dependabot on GitHub or by using the cargo
audit command to check for deprecated libraries in a project,
the results from RQ3 show that the number of deprecated
libraries recorded in the databases used by these tools is
very limited. As a result, most deprecated libraries cannot be
detected. Therefore, detecting deprecated libraries based on
the seven deprecation methods proposed in our paper could
more effectively expand the range of deprecated libraries
that these tools are able to identify.

Library B Library Z

Current Project

Library A Library YLibrary X

deprecated

deprecated inactive

active

active

n m

It represents library m
depends on library n.

Fig. 9: Library Dependency Chain with Maintenance Status

Displaying deprecated libraries in dependency chains.
Many developers may be unaware of the existence of current
deprecated library detection tools. For example, P42 men-
tioned in their response: “I wasn’t aware of cargo audit before
this survey”. Cargo should integrate proactive deprecation
alerts into the build or publish process, as suggested by 15

respondents, to eliminate the need for manual discovery
tools. For example, P21 mentioned:“ Would be nice if Cargo
would give a warning when publishing if one of the dependencies
has an issue [...] I do not want any increased burden on library
maintainers but it would be nice if you could mark a crate as
deprecated in Cargo.” NPM seems to have achieved this, but it
simply lists deprecation information for both direct upstream
libraries and transitive upstream libraries. This will confuse
developers who may not know how deprecated transitive
upstream libraries were introduced into their projects. As
demonstrated in Figure 5, while numerous packages directly
depend on well-maintained libraries, they ultimately inherit
deprecated dependencies indirectly. The complex network of
intermediate nodes in the software supply chain creates intri-
cate propagation paths for deprecated libraries, significantly
increasing the effort required for developers to eliminate
these deprecated dependencies from their projects. Therefore,
it would be better if the package manager could present to
developers the nodes and edges in the dependency chain of
the project that have maintenance issues, allowing developers
to intuitively understand the position of these nodes with
maintenance issues in the project.

In Table 7, 15 developers mentioned that they became
aware of deprecated libraries in their projects through Issues
or Pull Requests submitted by other developers. By un-
derstanding how deprecated libraries were introduced into
their projects, these developers can then take more effective
measures, such as providing Issues and Pull Requests to
upstream libraries that use deprecated libraries, to mitigate
risks at an earlier stage. For example, in Figure 9, project
developers can see that libraries A and B are deprecated.
Therefore, developers can send Issues or Pull Requests to the
repository of Library Z to make them aware of the risks in
their dependencies, prompting the maintainers of Library Z
to replace Library B more quickly.

Simplifying and standardizing the deprecation mecha-
nism of Rust libraries. Currently, Rust developers can declare
deprecation in various ways, such as adding a deprecation
notice in the README file or archiving the corresponding
GitHub repository. However, these approaches are not
consistently adopted and often require developers to check
multiple sources to fully understand a library’s status. To
address the diagnosed limitations of current signals, estab-
lishing a standardized and more streamlined process—such
as a unified deprecation flag that automatically propagates
across crates.io, GitHub, and documentation—could reduce
ambiguity and ensure that downstream users receive clear
and consistent signals. Such standardization would not only
help new users avoid adopting deprecated libraries but also
improve overall ecosystem transparency and maintainability.

7.2 Implications for OSS Hosting Platforms

Displaying maintenance status of open source repositories.
Although GitHub and Cargo currently provide some ways
to indicate the maintenance status of a library, these methods
heavily rely on the self-awareness and responsibility of
library maintainers. In our work, a lot of libraries that
have not been maintained for a long time do not indicate
whether they are deprecated. This can confuse users of these
libraries, leading them to spend a lot of time confirming

14

the maintenance status of the libraries, as reflected in the
repository of ansi_term 29. In this regard, code hosting plat-
forms can proactively assess the health status of open source
projects [52–56], helping users of projects better understand
the real status of the current libraries. Further, libraries do
not necessarily need to be constantly updated; they may be
in a state of development completion, especially for trivial
packages that provide fewer features [57]. Therefore, code
hosting platforms are best able to provide various types
of maintenance-related labels to reflect the current stage
of development of the project. For example, providing a
completed label indicates whether the current library is in a
completed state and only accepts bug-fix commits.

Suggesting alternative repositories. Based on the results
presented in Table 8, the inability to find suitable replacement
libraries also hinders the removal of deprecated libraries
within a project. Code hosting platforms can provide mecha-
nisms to help developers discover appropriate alternatives.
For example, if other developers have taken over a dep-
recated library through forking, the forked repository can
be recommended to users of the deprecated library. Code
hosting platforms can also recommend libraries most similar
to the current one based on library migration history. For
example, He et al. [58] have studied methods for library
migration recommendations within the Java ecosystem,
while Mujahid et al. [59] have explored the automatic
identification of alternative libraries in the NPM ecosystem.
These existing studies may provide some insights for library
recommendations in the Rust ecosystem. In future work,
researchers can focus on deprecated libraries in the Rust
ecosystem to explore better methods for recommending
alternatives, thereby helping developers remove deprecated
libraries from their projects more efficiently.

Providing reasons for deprecation. In RQ3, many devel-
opers believe that deprecated libraries do not need to be
removed as long as they do not cause problems. However,
most libraries are deprecated only through archiving, so no
description of the deprecation reason is provided. If a library
is archived due to its defects, users of these deprecated
libraries do not know the risks involved. Furthermore,
because the repository is in an archived state, new Issues
and PRs cannot be submitted, resulting in users of the
library being unaware of defects discovered by others in
the library. Therefore, maintenance status labels should be
accompanied by corresponding reason descriptions. For
example, if developers want to abandon a project, they
can mark the project as “deprecated” on the code hosting
platform and provide the reason for deprecation.

Displaying maintenance status in dependence chains.
The maintenance status of projects on code hosting platforms
can be obtained through public APIs, which can be well
integrated with package managers to help developers under-
stand the maintenance status of upstream libraries. As shown
in Figure 9, Library A has been deprecated. Submitting an
Issue or Pull Request in the repository of the inactive Library
X may not be the most effective approach. Therefore, when
project developers become aware of the inactivity of Library
X, they may choose to alert the dependencies of Library

29. https://github.com/ogham/rust-ansi-term/issues/72

Y, thus more effectively avoiding reliance on deprecated
libraries.

7.3 Implications for Future Research

Two prior studies have investigated library deprecation
in the NPM [13] and PyPI [12] ecosystems. Our study on
Rust enriches this line of research by extending the scope
to a new ecosystem, thereby serving as a complementary
contribution and offering inspiration for future work. Across
the three ecosystems, several commonalities emerge. For
instance, both the PyPI study and ours found that only a
small proportion of maintainers of inactive libraries explicitly
declare deprecation. Moreover, all three studies observed that
an explicit notice of abandonment facilitates clients’ decision
to stop using deprecated libraries, although the effect appears
weaker in our Rust study.

Despite these similarities, each study exhibits distinct
emphases, which make the results unique. The PyPI study
[12] defined libraries with explicit deprecation notices as
deprecated (equivalent to what we call advisory deprecation),
and focused on upstream behavior—such as why some
maintainers are reluctant to declare deprecation, and how
they might better inform downstream users. The NPM study
[13] considered both inactive packages (no commits for over
two years) and those with explicit deprecation notices as
deprecated, and primarily investigated what characteristics
of packages make them more likely to depend on deprecated
libraries.

However, these prior studies overlooked ecosystem-
specific automated detection tools or deprecation mech-
anisms, and paid little attention to developers’ attitudes
toward deprecated libraries. For example, some developers
are not opposed to using deprecated libraries, or may
be forced to use them because of external constraints. In
contrast, our study emphasizes understanding downstream
users of deprecated libraries, capturing both the subjective
reasons (e.g., developers’ own circumstances or perceptions
of deprecation) and the objective reasons (e.g., the limited
effectiveness of detection mechanisms) behind their contin-
ued use. This perspective extends prior work by providing a
more comprehensive view of deprecation practices.

Besides, the multiple deprecation methods identified in
the Rust ecosystem may also directly exist (such as ‘Descrip-
tion in GitHub’ and ‘README in GitHub’) or have variants
in other ecosystems (such as ‘Maintenance Badge’). Future
research on deprecated libraries should therefore pay closer
attention to ecosystem-specific deprecation and detection
mechanisms, while also considering the perspectives of both
upstream and downstream developers, to build a more
holistic understanding of deprecation and its impacts.

8 THREATS TO VALIDITY
In this section, we discuss the threats to the validity of our
study from the perspectives of internal validity and external
validity.

Internal Validity. Although our data comes from the
official data export of crates.io, the links to the code repos-
itories in crates.io are set by the maintainers themselves.
This may result in some GitHub repository links for Rust

15

packages pointing to packages that are not the original ones.
To mitigate this risk, we conducted a manual validation of
a statistically representative subset of our data. Specifically,
from the 40,636 libraries selected as study subjects in RQ1, we
randomly sampled 381 libraries based on a 95% confidence
level and a 5% margin of error. We manually inspected
each sampled library to ensure that the metadata and
GitHub repository linkage were correct. No inconsistencies
were found during this process. Furthermore, we manually
verified 1,468 deprecated libraries found in inactive libraries
to ensure that the Rust packages and GitHub repositories
have the correct correspondence.

To answer RQ1, we identified inactive libraries using a
one-year threshold along with their version release frequency.
To validate the accuracy of the identified inactive libraries,
we randomly selected 374 inactive libraries from the 13,289
identified inactive libraries based on a 95% confidence level
and a 5% margin of error. The data collection for the earlier
version of the paper was finalized on January 17, 2024. We
collected commit information for these 374 libraries from
January 17, 2024, to March 20, 2025. We found that 329
libraries (88%) had no commits at all during this period of
over one year. Among the remaining 45 libraries that have
commits, only two were relatively active, with commits on
more than 30 days. The other 43 libraries had an average
of 2.4 days with commits, and 21 of them had commits
on only one day. Overall, these results suggest that our
method is generally effective: the vast majority of libraries
remained inactive after being classified as such, with only a
few showing signs of renewed activity.

To determine whether the text indicates deprecation of
a library, we used keywords for filtering, and the final
filtering results are heavily dependent on the number and
quality of keywords. In this experiment, we selected as
many deprecation-related keywords as possible and used
the presence of keyword stems as a criterion for filtering to
reduce the possibility of libraries that have already declared
deprecation in the text being missed.

For the exploration of reasons why developers use dep-
recated libraries, our analysis is based on responses from 53
developers to a questionnaire. Different samples may lead to
different results. To minimize the situation where projects still
depend on deprecated libraries due to being unmaintained,
we selected projects that have had new versions released
within the past year. We examined the projects maintained
by the respondents and confirmed that all of these projects
had released new versions after the libraries they used
were declared deprecated. This indicates that the projects
maintained by these respondents remained active after
the deprecation declarations. Furthermore, among the 53
responses we received, no developer indicated that they had
suspended maintenance of their respective projects. These
results demonstrate the effectiveness of our selection criteria
for survey recipients.

In Section 5.1.1, we chose to observe deprecated libraries
that had been declared deprecated for more than six months.
This is because if the threshold is set too short, for example,
one month, many downstream packages might not have
had enough time to react and complete the removal of
deprecated libraries within such a short period, thus affecting
the validity of some conclusions in RQ2. Selecting a threshold

that is too long might significantly reduce the number
of libraries included in the study. For instance, if a one-
year threshold were used, the number of libraries in the
declared_lib set would drop to 90% of those included with
the 6-month threshold. By choosing a six-month threshold,
we excluded 150 libraries from the declared_lib set. These
excluded libraries had an average Historical Dependent
Count of 4.3, suggesting that their exclusion had a relatively
small impact. Therefore, we believe that six months is a
relatively reasonable threshold. Future work can explore
more reasonable observation windows to investigate the
impact of the deprecation declaration.

In the paper, we employed seven methods to identify dep-
recated libraries. These methods were not chosen arbitrarily;
rather, they were derived from a review of Rust’s official
documentation, common practices, and related literature.
The deprecation identification methods used in prior studies
on the NPM [13] and PyPI [12] ecosystems are included
within the seven methods we adopted in this paper. Taken
together, these mechanisms represent the most common and
widely accepted ways of declaring deprecation in practice.
Even though we cannot guarantee that there will be no other
ways. It’s a promising avenue for future work to explore
more deprecation ways.

Another minor limitation concerns our focus on inactive
libraries as the primary source for identifying deprecated
ones. This approach may exclude libraries that have been
recently marked as deprecated. We made this choice to
strike a balance between the substantial manual effort
required and the likelihood of identifying true deprecations,
given the scale of the full dataset. To assess the potential
impact of this decision, we randomly sampled 100 active
libraries and found that only two were deprecated, one via
yanking all releases and the other via archiving the repository
and adding a deprecation notice in the GitHub README.
Consequently, the omission of active libraries poses minimal
impact on the validity of our findings.

External Validity. Our work focuses on libraries within
the Rust ecosystem. Rust’s package manager, Cargo, does
not provide a formal package-deprecation mechanism, and
the locations where developers mark the status, such as
description and badges, may not exist in other language
ecosystems. Therefore, some of our conclusions may not
be easily generalized to other systems. Different language
ecosystems have their unique characteristics and design
differences in package management. Existing literature lacks
research on the activity and abandonment of Rust ecosystem
packages, and our work addresses this gap.

Our study exclusively selected Rust libraries hosted on
GitHub. While some libraries may be hosted on other code
hosting platforms, exporting data from those platforms
may be limited, and their functionalities may not be as
comprehensive as GitHub’s. As the world’s largest open-
source code hosting platform30, GitHub offers a richer set of
features and functionalities (such as Dependabot), making it
sufficiently representative for our research purposes.

Our survey sample in RQ3 is skewed toward experienced
Rust developers, which may limit the generalizability of the
RQ3 results; therefore, the findings should be interpreted as

30. https://en.wikipedia.org/wiki/GitHub

16

indicative of trends among experienced contributors rather
than as definitive conclusions for the broader developer
population.

9 CONCLUSION

In this paper, we empirically study packages in the Rust
ecosystem to explore the ways libraries declare deprecation,
the effects of library deprecation declarations, and the
reasons developers use deprecated libraries. We analyze
seven methods of library deprecation declarations and find
that only 11% of inactive libraries indicate that they are no
longer maintained. These deprecation declarations provide
limited practical influence on preventing the adoption of
deprecated libraries. And many downstream packages still
rely on deprecated libraries due to their lack of active
maintenance or unawareness of their usage of deprecated
libraries in projects.

Additionally, due to dependency chains, the issues in
deprecated libraries can propagate to a broader range of
downstream libraries. Based on these findings, we propose
some views and suggestions regarding the current situation
of deprecation declarations to facilitate better dissemination
of information about deprecated libraries in the software
supply chain and reduce associated risks stemming from
deprecated libraries.

10 DATA AVAILABILITY

To facilitate the reproducibility of our results or to expand
on our findings, the data and scripts used in this study are
available at https://doi.org/10.5281/zenodo.15266092.

11 ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Grant No. 62572048 and 62232003).

REFERENCES
[1] B. Farbey and A. Finkelstein, “Exploiting software supply chain

business architecture: a research agenda,” 1999.
[2] P. Mohagheghi and R. Conradi, “Quality, productivity and eco-

nomic benefits of software reuse: a review of industrial studies,”
Empirical Software Engineering, vol. 12, pp. 471–516, 2007.

[3] Synopsys, “About us synopsys,” https://www.synopsys.com/
company.html, 2023.

[4] D.-L. Vu, Z. Newman, and J. S. Meyers, “Bad snakes: Understand-
ing and improving python package index malware scanning,” in
2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 2023, pp. 499–511.

[5] J. Sun, Z. Xing, Q. Lu, X. Xu, L. Zhu, T. Hoang, and D. Zhao,
“Silent vulnerable dependency alert prediction with vulnerability
key aspect explanation,” arXiv preprint arXiv:2302.07445, 2023.

[6] M. Fan, Y. Zhang, K.-J. Stol, and H. Liu, “Core developer turnover
in the rust package ecosystem: Prevalence, impact, and awareness,”
Proc. ACM Softw. Eng., vol. 2, no. FSE, Jun. 2025. [Online]. Available:
https://doi.org/10.1145/3729392

[7] J. Coelho and M. T. Valente, “Why modern open source projects
fail,” in Proceedings of the 2017 11th Joint meeting on foundations of
software engineering, 2017, pp. 186–196.

[8] Y. Yu, A. Benlian, and T. Hess, “An empirical study of volunteer
members’ perceived turnover in open source software projects,” in
2012 45th Hawaii International Conference on System Sciences. IEEE,
2012, pp. 3396–3405.

[9] Y. Wang, P. Sun, L. Pei, Y. Yu, C. Xu, S.-C. Cheung, H. Yu, and
Z. Zhu, “Plumber: Boosting the propagation of vulnerability fixes
in the npm ecosystem,” IEEE Transactions on Software Engineering,
2023.

[10] npm Docs, “Deprecating and undeprecating packages or
package versions,” https://docs.npmjs.com/deprecating-and-
undeprecating-packages-or-package-versions.

[11] S. O. Community, “2022 developer survey,”
https://survey.stackoverflow.co/2022#section-most-loved-
dreaded-and-wanted-programming-scripting-and-markup-
languages, 2022.

[12] Z. Zhong, S. He, H. Wang, B. Yu, H. Yang, and P. He, “An empirical
study on package-level deprecation in python ecosystem,” arXiv
preprint arXiv:2408.10327, 2024.

[13] C. Miller, M. Jahanshahi, A. Mockus, B. Vasilescu, and C. Kästner,
“Understanding the response to open-source dependency abandon-
ment in the npm ecosystem,” in Int’l Conf. Software Engineering
(ICSE), IEEE/ACM, 2025.

[14] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics
of the javascript package ecosystem,” in Proceedings of the 13th
International Conference on Mining Software Repositories, 2016, pp.
351–361.

[15] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and
evolution of package dependency networks,” in 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR).
IEEE, 2017, pp. 102–112.

[16] X. Tan, K. Gao, M. Zhou, and L. Zhang, “An exploratory study of
deep learning supply chain,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 86–98.

[17] Y. Wang, M. Wen, Y. Liu, Y. Wang, Z. Li, C. Wang, H. Yu, S.-C.
Cheung, C. Xu, and Z. Zhu, “Watchman: Monitoring dependency
conflicts for python library ecosystem,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 125–135.

[18] Y. Wang, M. Wen, R. Wu, Z. Liu, S. H. Tan, Z. Zhu, H. Yu, and S.-C.
Cheung, “Could i have a stack trace to examine the dependency
conflict issue?” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 572–583.

[19] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu, Z. Zhu,
and S.-C. Cheung, “Do the dependency conflicts in my project
matter?” in Proceedings of the 2018 26th ACM joint meeting on european
software engineering conference and symposium on the foundations of
software engineering, 2018, pp. 319–330.

[20] A. Decan, T. Mens, and M. Claes, “An empirical comparison of
dependency issues in oss packaging ecosystems,” in 2017 IEEE 24th
international conference on software analysis, evolution and reengineering
(SANER). IEEE, 2017, pp. 2–12.

[21] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison
of dependency network evolution in seven software packaging
ecosystems,” Empirical Software Engineering, vol. 24, pp. 381–416,
2019.

[22] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small
world with high risks: A study of security threats in the npm
ecosystem,” in 28th USENIX Security Symposium (USENIX Security
19), 2019, pp. 995–1010.

[23] A. Zerouali, T. Mens, A. Decan, and C. De Roover, “On the impact
of security vulnerabilities in the npm and rubygems dependency
networks,” Empirical Software Engineering, vol. 27, no. 5, p. 107,
2022.

[24] B. Chinthanet, R. G. Kula, S. McIntosh, T. Ishio, A. Ihara, and
K. Matsumoto, “Lags in the release, adoption, and propagation of
npm vulnerability fixes,” Empirical Software Engineering, vol. 26, pp.
1–28, 2021.

[25] G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, A. E. Santosa,
A. Sharma, and D. Lo, “Out of sight, out of mind? how vulnera-
ble dependencies affect open-source projects,” Empirical Software
Engineering, vol. 26, pp. 1–34, 2021.

[26] M. Alfadel, D. E. Costa, and E. Shihab, “Empirical analysis of
security vulnerabilities in python packages,” Empirical Software
Engineering, vol. 28, no. 3, p. 59, 2023.

[27] C. Teyton, J.-R. Falleri, and X. Blanc, “Mining library migration
graphs,” in 2012 19th Working Conference on Reverse Engineering.
IEEE, 2012, pp. 289–298.

[28] C. Teyton, J.-R. Falleri, M. Palyart, and X. Blanc, “A study of library
migrations in java,” Journal of Software: Evolution and Process, vol. 26,
no. 11, pp. 1030–1052, 2014.

[29] H. Alrubaye, M. W. Mkaouer, and A. Ouni, “On the use of
information retrieval to automate the detection of third-party java
library migration at the method level,” in 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). IEEE,
2019, pp. 347–357.

 https://doi.org/10.5281/zenodo.15266092
https://www.synopsys.com/company.html
https://www.synopsys.com/company.html
https://doi.org/10.1145/3729392

17

[30] “Rust api deprecation,” https://doc.rust-
lang.org/reference/attributes/diagnostics.html#the-deprecated-
attribute.

[31] “Cargo yank,” https://doc.rust-lang.org/cargo/commands/cargo-
yank.html.

[32] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers
react to api deprecation? the case of a smalltalk ecosystem,” in
Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, 2012, pp. 1–11.

[33] A. A. Sawant, M. Aniche, A. van Deursen, and A. Bacchelli,
“Understanding developers’ needs on deprecation as a language
feature,” in Proceedings of the 40th International Conference on Software
Engineering, 2018, pp. 561–571.

[34] F. R. Cogo, G. A. Oliva, and A. E. Hassan, “Deprecation of packages
and releases in software ecosystems: A case study on npm,” IEEE
Transactions on Software Engineering, vol. 48, no. 7, pp. 2208–2223,
2021.

[35] H. Li, F. R. Cogo, and C.-P. Bezemer, “An empirical study of yanked
releases in the rust package registry,” IEEE Transactions on Software
Engineering, vol. 49, no. 1, pp. 437–449, 2022.

[36] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies? an empirical study
on the impact of security advisories on library migration,” Empirical
Software Engineering, vol. 23, pp. 384–417, 2018.

[37] X. Xia, S. Zhao, X. Zhang, Z. Lou, W. Wang, and F. Bi, “Under-
standing the archived projects on github,” in 2023 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2023, pp. 13–24.

[38] J. Coelho, M. T. Valente, L. Milen, and L. L. Silva, “Is this github
project maintained? measuring the level of maintenance activity of
open-source projects,” Information and Software Technology, vol. 122,
p. 106274, 2020.

[39] J. Coelho, M. T. Valente, L. L. Silva, and E. Shihab, “Identify-
ing unmaintained projects in github,” in Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, 2018, pp. 1–10.

[40] J. Maqsood, I. Eshraghi, and S. S. Ali, “Success or failure iden-
tification for github’s open source projects,” in Proceedings of the
2017 International Conference on Management Engineering, Software
Engineering and Service Sciences, 2017, pp. 145–150.

[41] “Semantic versioning 2.0.0,” https://semver.org/.
[42] J. Khondhu, A. Capiluppi, and K.-J. Stol, “Is it all lost? a study

of inactive open source projects,” in Open Source Software: Quality
Verification: 9th IFIP WG 2.13 International Conference, OSS 2013,
Koper-Capodistria, Slovenia, June 25-28, 2013. Proceedings 9. Springer,
2013, pp. 61–79.

[43] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies? an empirical study
on the impact of security advisories on library migration,” Empirical
Software Engineering, vol. 23, pp. 384–417, 2018.

[44] J. Zhang, Q. Gong, Y. Chen, Y. Xiao, X. Wang, and A. Y. Ding,
“Understanding work rhythms in software development and their
effects on technical performance,” IET Software, vol. 2024, no. 1, p.

8846233, 2024.
[45] J. Wu, W. Xu, K. Gao, J. Li, and M. Zhou, “Characterize software

release notes of github projects: Structure, writing style, and
content,” in 2023 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2023, pp. 473–484.

[46] N. Nachar et al., “The mann-whitney u: A test for assessing whether
two independent samples come from the same distribution,”
Tutorials in quantitative Methods for Psychology, vol. 4, no. 1, pp.
13–20, 2008.

[47] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers, 2005.

[48] J. Singer, S. E. Sim, and T. C. Lethbridge, “Software engineering
data collection for field studies,” Guide to advanced empirical software
engineering, pp. 9–34, 2008.

[49] D. S. Cruzes and T. Dyba, “Recommended steps for thematic
synthesis in software engineering,” in 2011 international symposium
on empirical software engineering and measurement. IEEE, 2011, pp.
275–284.

[50] R. S. C. W. Group, “Rustsec advisory database,”
https://rustsec.org/.

[51] Github, “Github advisory database,”
https://github.com/github/advisory-
database/tree/main/advisories/github-reviewed.

[52] S. P. Goggins, M. Germonprez, and K. Lumbard, “Making open
source project health transparent,” Computer, vol. 54, no. 8, pp.
104–111, 2021.

[53] Z. Liao, F. Fu, Y. Zhao, S. Tan, Z. Yu, and Y. Zhang, “Hspm: A better
model to effectively preventing open-source projects from dying.”
Computer Systems Science & Engineering, vol. 47, no. 1, 2023.

[54] R. Yang, Y. Yang, Y. Shen, and H. Sun, “An approach to assessing the
health of opensource software ecosystems,” in CCF Conference on
Computer Supported Cooperative Work and Social Computing. Springer,
2022, pp. 465–480.

[55] M. Valiev, B. Vasilescu, and J. Herbsleb, “Ecosystem-level determi-
nants of sustained activity in open-source projects: A case study
of the pypi ecosystem,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2018, pp. 644–655.

[56] H. Hata, T. Todo, S. Onoue, and K. Matsumoto, “Characteristics
of sustainable oss projects: A theoretical and empirical study,” in
2015 IEEE/ACM 8th International Workshop on Cooperative and Human
Aspects of Software Engineering. IEEE, 2015, pp. 15–21.

[57] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study
on npm,” in Proceedings of the 2017 11th joint meeting on foundations
of software engineering, 2017, pp. 385–395.

[58] H. He, Y. Xu, Y. Ma, Y. Xu, G. Liang, and M. Zhou, “A multi-metric
ranking approach for library migration recommendations,” in 2021
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2021, pp. 72–83.

[59] S. Mujahid, D. E. Costa, R. Abdalkareem, and E. Shihab, “Where
to go now? finding alternatives for declining packages in the npm
ecosystem,” in 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2023, pp. 1628–1639.

	Introduction
	Background
	Related Work
	Software Supply Chain
	Deprecation Mechanism

	Dependency Management in Cargo
	Terminology

	Dataset
	RQ1: Prevalence of Deprecated Libraries
	Method
	Results

	RQ2: Impacts of Deprecation Declaration
	Method
	Results

	RQ3: Reasons for developers using deprecated libraries
	Method
	Results

	Implications
	Implications for Maintainers of Package Managers
	Implications for OSS Hosting Platforms
	Implications for Future Research

	THREATS TO VALIDITY
	Conclusion
	Data Availability
	Acknowledgments

