
Contributions, Collaborations, and Transitions: Paid and
Volunteer Developers in the Rust Community
YUXIA ZHANG∗, Beijing Institute of Technology, China
KLAAS-JAN STOL, University College Cork and Lero, Ireland
MINGHUI ZHOU, Peking University, China
QUNHONG ZENG and MIAN QIN, Beijing Institute of Technology, China
HUI LIU, Beijing Institute of Technology, China

An increasing number of companies are contributing to open source software (OSS) projects by assigning
their employees to advance their business objectives. These paid developers collaborate with volunteer
contributors, but the differing motivations of these two groups can sometimes lead to conflicts, which might
endanger the OSS project’s sustainability. This article presents a multi-method comparative study of paid
developers and volunteers in Rust, currently one of the most popular open source programming languages.
We compare volunteers and paid developers through contribution behavior, social collaboration, and long-
term participation. Then, we solicit volunteers’ perceptions of paid developers and explore the emotions
caused when volunteers transition to paid roles. We find that core paid developers tend to contribute more
frequently; peripheral paid developers contribute bigger commits and focus more on implementing features;
both core and peripheral paid developers collaborate more with volunteers but less intensively than expected;
and being paid correlates positively with becoming a long-term contributor. Our study also reveals existing
unfamiliarity and prejudices among volunteers towards paid developers, and that volunteer-to-paid transitions
can evoke negative community sentiments. This study suggests that the dichotomous view of paid vs. volunteer
developers is too simplistic and that further subgroups could be identified. Contributing organizations should
become more sensitive to how OSS communities perceive them when they attempt to get involved and make
improvements.

CCS Concepts: • Software and its engineering→ Collaboration in software development;Open source
model; Programming teams.

Additional Key Words and Phrases: Open source software, paid developers, volunteers, sustainability, Rust

ACM Reference Format:
Yuxia Zhang, Klaas-Jan Stol, Minghui Zhou, Qunhong Zeng, Mian Qin, and Hui Liu. 2026. Contributions,
Collaborations, and Transitions: Paid and Volunteer Developers in the Rust Community. ACM Trans. Softw.
Eng. Methodol. 1, 1 (January 2026), 32 pages. https://doi.org/10.1145/3789503

1 Introduction
Open source software (OSS) has become the backbone of society’s technical infrastructure. A recent
report [88] estimates that up to 96% of commercial codebases contain OSS. Motivated by the huge
impact of OSS, a large number of companies have embraced open source to accelerate innovations,
∗Corresponding author.

Authors’ Contact Information: Yuxia Zhang, yuxiazh@bit.edu.cn, Beijing Institute of Technology, China; Klaas-Jan Stol,
k.stol@ucc.ie, University College Cork and Lero, Cork, Ireland; Minghui Zhou, zhmh@pku.edu.cn, Peking University, China;
Qunhong Zeng, qunhongzeng@bit.edu.cn; Mian Qin, qinmian@bit.edu.cn, Beijing Institute of Technology, China; Hui Liu,
liuhui08@bit.edu.cn, Beijing Institute of Technology, China.

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© 2026 Copyright held by the owner/author(s).
ACM 1557-7392/2026/1-ART
https://doi.org/10.1145/3789503

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

HTTPS://ORCID.ORG/0000-0002-9371-5931
HTTPS://ORCID.ORG/0000-0002-1038-5050
HTTPS://ORCID.ORG/0000-0001-6324-3964
HTTPS://ORCID.ORG/0009-0000-4034-2492
HTTPS://ORCID.ORG/0009-0005-6210-2285
HTTPS://ORCID.ORG/0000-0002-3267-6801
https://doi.org/10.1145/3789503
https://orcid.org/0000-0002-9371-5931
https://orcid.org/0000-0002-1038-5050
https://orcid.org/0000-0001-6324-3964
https://orcid.org/0009-0000-4034-2492
https://orcid.org/0009-0005-6210-2285
https://orcid.org/0000-0002-3267-6801
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://doi.org/10.1145/3789503

2 Zhang et al.

new approaches, and best practices [40, 42]. For example, most work in the Linux kernel today
is done by paid developers who are hired by companies, emphasizing the important role of paid
developers in OSS [22, 93].

Companies participate in OSS projects by tasking their employees to make specific contributions
to an OSS project, or by hiring volunteers from the project to do the same. (We use the term
‘paid developer’ to refer to those who are paid and tasked by a company to make contributions
to a specific OSS.) A company’s business objectives may affect the direction and scale of how its
paid developers make contributions to the OSS project that the company is involved in [109, 116].
Volunteers contribute to open source projects for other reasons, frequently for intrinsic motivations,
such as fun, but also to make a better product (to “scratch an itch” [77]), rather than pursuing
commercial objectives.
Corporate participation in open source is also a source of some concern for several reasons.

Contributions from a company may be highly specialized and specific to the company, and be
at odds with the project’s roadmap; integrating such contributions into the main development
branch may not be welcome [7]. Recent work found that dominant corporate participation may be
a threat to a project’s survival rate [107]. Diverging motivations and behavior that do not comply
with a project’s norms may lead to conflict within a project. Such conflicts may lead to companies
withdrawing their support from an OSS project and may also result in the turnover of individual
developers, including both paid developers and volunteers [85, 92].

One popular project where corporate involvement has also led to concerns is Rust, an open source
programming language governed by multiple teams [91], and which has been the ‘most loved’
language for seven years in a row [20]. Hundreds of companies globally use Rust in production,
replacing critical systems previously written in C/C++ [91], and since late 2022, Rust can also be
used to write Linux kernel components. One report estimated that 28% of commits to Rust were
made by paid contributors [70]. There are considerable concerns about corporate involvement in
Rust. One Rust member highlighted a lack of responsiveness to community concerns in a blog post
[101]:

“The core team repeatedly dismissed and maligned several members’ concerns about
the involvement of a company so heavily involved with producing spyware.”

Shortly after, the full moderation team that was responsible for upholding the code of conduct of
the Rust project, resigned on November 22, 2021 [3, 92]. The moderation team posted that their
resignation is “in protest of the Core Team placing themselves unaccountable to anyone but themselves”
[92]. The resignation of the moderation team and negative perspectives of corporate involvement
have gained wide attention in the Rust community [59], which would have led developers in Rust
to think more critically about the participation of companies in general, as well as governance
issues.

Maintaining sustainable development is crucial to OSS ecosystems, and a clear understanding of
the characteristics of both the developers assigned by companies and volunteers in the same OSS
project is essential to support this goal. As such, Rust can be considered an intrinsic case study
[23], that is, a case study selected on its own merits for its intrinsic features. Thus, the Rust project
is a potentially fruitful source to develop a better understanding of the differences and similarities
between paid developers and volunteers.
This study is guided by five research questions. First, we seek to compare paid developers and

volunteers in terms of contribution frequency, scale, and tasks. Employed developers typically
would work full-time on certain tasks, whereas many volunteers would have normal daytime jobs,
and contribute in their spare hours. Further, paid developers are more likely to work on specific

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 3

tasks that they were assigned than volunteers, who would typically self-select tasks to work on.
Thus, our first research question (RQ) is:

RQ1: Do paid developers and volunteers differ in their contribution behavior to the
Rust project?

RQ1 compares paid developers and volunteers at an individual granularity. The success of an OSS
project relies on collaboration among its contributors [95]. However, the differing motivations and
organizational contexts of the two groups may shape distinct interaction patterns. Does it matter
whether contributors are paid or not when they collaborate? Do paid developers and volunteers
“play nice” together—do they work together on modules or code, or do they work on distinct parts
without overlap? Understanding whether and how they collaborate helps reveal the social dynamics
of OSS development. Thus, our second question is:

RQ2: Do paid developers and volunteers collaborate within the Rust project?
Of key importance is an OSS project’s continuity and sustainability; long-term contributors

(LTC) play a key role in the long-term health of a project [64, 114, 116]. Several factors that affect
a contributor’s likelihood of becoming an LTC have been studied, such as contribution models,
corporate dominance, and social links. However, prior research has not addressed the question of
whether becoming a paid developer affects becoming an LTC. Hence, we ask:

RQ3: Does being paid or not affect the likelihood of a Rust developer becoming a
long-term contributor to the Rust project?

Aside from actual contribution, how volunteers perceive paid developers is also important,
because volunteers’ perceptions of their paid ‘colleagues’ may shape their collaboration with
paid developers. As we illustrated above with the events around Amazon’s involvement in Rust,
volunteer developers may perceive paid developers as having a negative influence. However, no
evidence exists on this topic, hence, we ask:

RQ4: How do volunteers perceive the participation of paid developers in the Rust
project?

Volunteers in OSS projects can also become paid developers if they have an outstanding con-
tribution record, and if they need to secure financial support. Developers who transition from
volunteers to paid developers are usually key to the development of an OSS project and can have a
big impact on its development roadmap. While paid developersmay share a passion and interest for
a project, ultimately they have a different “master to serve.” An infamous example of this is the case
of the Debian project when a decision to pay two Debian volunteers (the ‘Dunc-Tank’ experiment)
led to a considerable uproar in the community [33, 71], and led some volunteers to reduce their
involvement: “Some people who used to do good work reduced their involvement drastically” [9]. The
literature shows that developers’ affective state can have an impact on work performance and team
collaboration [37, 68]. Yet, little is known about how such role transitions (from volunteer to paid
developer) affect the emotional dynamics within OSS communities. Understanding these emotional
responses is crucial, as they may influence community cohesion. Thus, our fifth research question
is:

RQ5: What emotions arise when Rust volunteers are hired by companies to continue
their work on Rust?

We conducted a mixed-methods study to address these questions. To answer RQ1, RQ2, and RQ3,
we developed five hypotheses and tested these using commit data from Rust’s code repository. To
answer RQ4, we conducted a survey to gather volunteer developers’ perceptions of paid developers;
we focused specifically on the five hypotheses mentioned above; we answer RQ5 by conducting
emotion analysis of the comments about a Rust volunteer becoming a paid developer. This article

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

4 Zhang et al.

extends our previous study [106], which addressed RQ1 (contribution behavior), RQ3 (likelihood of
becoming a LTC), and RQ4 (perceptions of paid developers). We extended this initial study by two
complementary research questions (RQ2, investigating collaboration between volunteer and paid
developers; and RQ5, investigating emotional responses to volunteers being hired by companies).
We further refined the analysis of the initial RQs.

The findings show that paid developers and volunteers differ in several ways in how they con-
tribute. For example, core paid developers tend to contribute more frequently than core volunteers.
Although paid developers have more collaborations with volunteers, the collaborations are signifi-
cantly fewer in number than expected. Further, we found that being paid is positively associated
with becoming a long-term contributor to Rust. The survey results suggest that most volunteers
either have prejudices or are unfamiliar with paid developers. Finally, the results of emotion analysis
show that developers changing from Rust volunteers to being paid tend to invoke negative emotions,
such as anger, disgust, fear, and sadness. The proportions of emotions vary among the platforms
where the posts about the transition of volunteers to paid developers are published. Understanding
the differences and similarities between paid developers and volunteers in OSS projects and to
what extent we understand the two groups, can aid project leaders in steering their community.
Further, companies can refine their OSS engagement strategies by identifying gaps between their
contributions and volunteer expectations. Recognizing shared traits between the two groups may
promote fairer perceptions of paid developers, fostering more positive, productive, and sustainable
collaboration.

2 Hypothesis Development
Initially, open source softwarewas developed by volunteers; as Raymond characterized it, developers
(or ‘hackers’) wrote software to “scratch an itch” [77]. As paid developers are now commonly
members of open source projects alongside volunteers, conflicts may arise due to diverging views
on the future of a project. While paid developers may share a passion and interest for a project,
ultimately they have a different “master to serve.” We review prior literature that compares paid
and volunteer open source developers in terms of contribution characteristics, collaboration, and
long-term participation, resulting in five hypotheses.

2.1 Contributions of Paid and Volunteer Open Source Developers
Many studies have previously discussed differences between paid developers and volunteers,
with varying ways to distinguish these two groups. Several early studies established that some
OSS developers were paid for their work [38, 43, 55]. These survey studies indicated that many
respondents (38%-55%) contributed during normal working hours. These studies considered open
source development work that is effectively paid for by companies who support OSS communities—
whether these companies are aware of it or not [55]. Riehle et al.’s 2014 study of project repositories
considered contributions made from 9 am to 5 pm during weekdays as ‘paid work’; based on this
heuristic, they estimated that 50% of OSS work is paid for by companies [79]. However, a recent
study by Dias et al. of five company-initiated OSS projects found that most contributions happen
between 9 am and 5 pm for both paid developers and volunteers [25], which casts some doubt on
the conclusions in Riehle et al.’s earlier study [79].

The studies cited above do not clearly differentiate between what we label ‘purposeful’ sponsor-
ship through OSS contributions whereby companies purposefully task developers with contributing
to OSS projects, in alignment with corporate strategy, and ‘de facto’ sponsorship whereby devel-
opers contribute during work time but were not explicitly instructed to do so, or without their
managers’ approval and awareness. However, even early studies of OSS highlighted purposeful
sponsorship; for example, German reported in 2002 that Red Hat dedicated six full-time developers

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 5

to the GNOME project [34, 35]. In the 20 years or so that have passed since these early studies,
purposeful sponsorship of OSS projects has become much more prevalent [cf. 21, 47, 70].

Determiningwhether anOSS developer is paid or a volunteer remains a challenge [5, 15].Whereas
early studies have relied on self-reporting surveys to characterize OSS communities [38, 43, 55],1
in more recent years researchers have started to infer this information from software repository
data using heuristics, such as the time at which commits are made [79], the email address domain
associated with commits [16, 70], or the site_admin flag that can be set for contributors in GitHub
organizations [26]. For example, Dias et al. [26] define internal developers as those who are paid by
the organization who open-sourced the project, whereas external developers are not employed
by that organization. In their study on effort estimation in OSS, Robles et al. [82] distinguished
between full-time and non-full-time developers, implying that those who are full-time are paid by
their employer to contribute to OSS projects, whereas those who are non-full-time may be either
paid or volunteer. Barcomb et al. argued that from a community’s perspective, volunteers may be
indistinguishable from non-volunteers [5].

Studying the differences between paid developers and volunteers provides an understanding of
these two categories of developers, who may have different reasons to contribute. Dias et al. found
that both internal developers and external developers are rather active: internal developers are
responsible for ca. 46% of the pull-requests vs. external developers’ ca. 54% [26]. Another study using
the same dataset and heuristic, investigated differences between employees and volunteers in terms
of their contributions and acceptance rates [73]. Volunteers face considerably more rejections (up
to 26 times more rejections of contributions) than employees, and have to wait considerably longer
than employees (on average 11 vs. 2 days, respectively). Another study by Dias et al. found that
volunteers’ contributions focus primarily on refactoring, and that corporate developers (employed
by the projects’ initiating company) focus more on management (including documentation) [25].
Rather than focusing on when contributions are made (work hours vs. spare time), we suggest

that a difference between paid developers and volunteers lies in the frequency with which they
contribute. Given that paid developers have more time to dedicate to the project, and that a lack of
time is a common reason experienced by volunteers, we hypothesize that:

Hypothesis 1 (H1): Paid developers contribute more frequently than volunteers.
Another way in which paid developers and volunteers might differ is the way they contribute

code; Pinto et al. previously observed that contributions by paid developers tend to be larger
than those from volunteers [73]. For paid developers, who work on behalf of their companies,
achieving their set goals may be more important than concerns such as maintainability of the code
[66, 84]. Merging code changes to an OSS repository is an onerous and time-consuming process for
maintainers [80]; paid developers may want to reduce the overhead of submitting commits and
contribute whole features, or complete tasks with as few commits as possible. Volunteers, on the
other hand, may have limited time and do not pursue business-specific requirements to make large
code changes. For paid developers, these considerations may not exist. Thus, we posit:

Hypothesis 2 (H2): Paid developers contribute larger chunks2 of code in commits.
Further, companies have specific business objectives when contributing to OSS, such as integrat-

ing their own products [104, 109], and paid developers are typically assigned particular tasks that
are important to their employer’s feature roadmap. Moreover, the effort required to implement new

1Even self-reporting can be problematic: while respondents may contribute to OSS during business hours, they may do so
without their managers’ awareness (as in the case of de facto sponsorship). In that case, are they paid for their open source
work?
2Inspired by Kolassa et al. [53], we measure a chunk as the sum of two variables: number of lines of code added and number
of lines of code removed in a commit.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

6 Zhang et al.

features is generally greater than that for other development activities [103], and paid developers
can dedicate more focused and sustained time to contributing to OSS projects. On the other hand,
volunteers tend to contribute to open source projects because of their interest and ‘passion’ [1, 100];
while motives will vary, volunteers who contribute to a project will want to see that project succeed
and improve over time. This means that rather than delivering business-ready features, we argue
they are more likely to make improvements through bug fixes and non-functional improvements.
Thus, we propose:

Hypothesis 3 (H3): Paid developers are more likely to contribute features than volun-
teers.

2.2 Collaborations among Paid and Volunteer Open Source Developers
OSS development relies on the collaboration of contributors distributed worldwide. Several studies
have investigated individual contributors’ collaboration, including collaboration visualization,
understanding, and improvement in OSS development [14, 62, 63]. A few studies have explored how
companies collaborate in an OSS project. For example, in their study of the OpenStack ecosystem,
Zhang et al. found that companies collaborate either intentionally or passively, or choose to work
in isolation [110]. Corporations’ culture and software development processes differ considerably
from volunteers in open source communities [85], which may inhibit any collaboration among
paid and volunteer developers. Further, paid developers are a minority in most OSS projects [5, 55],
and this is particularly true in the Rust project: over 90% of its contributors are volunteers [?].
Companies are more likely to get involved in specific OSS projects that have already established
themselves as mature projects and thus can offer considerable business value [50], such as the
Linux kernel [93], OpenStack [105, 109], and Eclipse [12]. This suggests that paid developers join
an OSS project on their employer’s behalf when it is already mature; this in turn may limit their
collaboration with key volunteers who have gained a reputation or occupy positions of community
leadership. Thus, we suggest that:

Hypothesis 4 (H4): Paid developers tend to collaborate less with volunteers.

2.3 Becoming Long-Term Contributors
A key factor for the sustainability of OSS projects is to attract LTCs [114, 115]. Open source
communities attract a variety of developers with varying motivations to contribute. The duration
of contributors varies as well; some contributors contribute only once [56, 57]. Lee et al. [57]
found that the main reason for peripheral contributors not to continue contributing is that they
see “nothing else to contribute.” Calefato et al. studied open source developers who took a break
from contributing [11]. Amongst others, they found that all core developers in the 18 projects they
studied have taken a break in activity at least once.
Of particular interest to open source projects is, of course, whether developers continue to

contribute, i.e., whether they become LTCs. Several studies have focused on newcomers to open
source [13, 87, 90], developer turnover and retention in open source communities [58, 105, 116].
Zhang et al. found a positive association between the diversity of companies’ contribution models
and the number of volunteers [109] and a negative impact of company domination on the sustain-
ability of OSS projects. Valiev et al. [96] found that the involvement of companies has a significant
negative effect on the sustainability of projects in the PyPI ecosystem, with a shared opinion among
interviewees that companies’ support is not sustainable long term.
Zhou and Mockus studied factors that affect the chances that a contributor becomes an LTC

[115]. They found that contributors who get at least one issue reported in the first month to be
fixed can double their odds of becoming an LTC; the popularity of projects and low attention from

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 7

peers can reduce those odds. Lin et al. found that developers are more likely to remain active when
they start contributing to a project early, modify rather than create files, and focus primarily on
code rather than documentation [58].
Intrinsic motivations may lead to a long-term bond between volunteers and an OSS project.

Previous work found that companies may withdraw from OSS projects for various reasons [105],
for example, when a company changes its business strategy towards an OSS project. In such a case,
paid developers may no longer be tasked to work on an OSS project. Thus, we propose:

Hypothesis 5 (H5): Paid developers are less likely to become long-term contributors.

3 Study Design
We conducted a mixed-method study of the Rust project using quantitative and qualitative methods
[28]. We selected Rust as a case study to investigate the tensions that might arise when companies
participate in an open source project. Initially created by Mozilla engineer Graydon Hoare in 2006,
the project is now managed by the Rust Foundation [91]. Rust is used in production by hundreds
of companies worldwide, who also participate in the development of the project. The influence of
corporate participation on the project, however, has led to concerns from the community [92, 101];
as mentioned briefly earlier, these tensions led to the resignation of the project’s moderation team.

We collected and cleaned the commit data of 4,117 Rust contributors (Sec. 3.1 and 3.2), conducted
comparisons to determine the differences and similarities between paid developers and volunteers
(Sec. 3.3), built a social network to analyze their collaboration likelihood (Sec. 3.4), and created a
statistical model to determine the probability of becoming long-term contributors (Sec. 3.5). We
then surveyed volunteer Rust developers (Sec. 3.6) to collect their views on paid Rust developers
and conducted an emotion analysis of the caused comments when a Rust volunteer became a paid
developer (Sec. 3.7). Figure 1 shows an overview of our methodology. An appendix provides the
data, scripts, and other resources [108].

Rust Git
repository

112,969 commits

Rust Git
repository

112,969 commits

RQ1: Do paid
developers and

volunteers differ in their
contribution behavior?

RQ3: Are paid
developers more likely
to become long-term

contributors?

RQ4: How do
volunteers perceive
the participation of

paid developers?

Developer survey
n=53

Results of hypothesis
tests H1-3 (Sec. 4.1)

Hypothesis test
H5 (Sec. 4.3)

Developer
perceptions (Sec. 4.4)

Research
Question

Data

Analysis
Procedures

Results

Rust Git
repository

112,969 commits

RQ2: Do paid
developers and

volunteers
collaborate?

Hypothesis test H4
(Sec. 4.2)

Logistic
regression

models

RQ5: What emotions
arise when volunteers are

hired by companies to
continue their work?

576 comments from Reddit,
Hacker News, Rust forum, X

Distribution of Ekman’s
6 basic emotions by
platform (Sec. 4.5)

Social
network
analysis

Hypothesis
testing

Thematic
analysis

Emotion
Analysis,

DistilRoBERTa

Developer behavior Developer perception Sentiment analysis

Fig. 1. Overview of study design

3.1 Data Collection
Rust uses Git as its version control system. We obtained the commit metadata from GitHub, which
hosts the repository of the Rust project [18] by querying GitHub’s REST API. The period of the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

8 Zhang et al.

dataset is over 11 years, starting at Rust’s creation date (July 7, 2010) until December 16, 2021,
containing 114,074 commits.

Each commit includes the name and email of the author, a timestamp, a message description, and
the ‘diffs’ (the raw content of changes between different versions of a file). Previous research found
that automated bots, rather than human developers, also submit commits [2, 24]. We identified four
bot accounts, i.e., ‘bors’, ‘dependabot-preview[bot]’, ‘ImgBotApp’, and ‘dependabot[bot]’, which
together submitted 138 commits, based on the patterns identified by previous work [2, 24, 94, 109].
We also removed rollback and merge commits, leaving a total of 112,969 commits for analysis.
Below, we describe the procedures for cleaning the data.

3.2 Data Cleaning
3.2.1 Merging Multiple Identities. Developers may have multiple accounts when contributing to
open source projects, each of which may have a different name and email address [2, 8, 54]. To
establish an accurate representation of a developer’s activity and contributions, it is necessary
to merge multiple identities that belong to the same developer. We addressed this problem by
using a rule-based method [117], which augments the developer’s name and email address, and
has been shown to result in a high level of accuracy (with a precision close to 100%). For example,
accounts <John-Smith, johnsmith@gmail.com> and <John Smith, johnsmith@gmail.com> will be
merged because of the same email. The rules also apply to accounts with the same names. Using
this approach on an initial list of 4,673 author identities, 556 were merged, resulting in a list of 4,117
distinct authors. To assess the accuracy of this identity merge, we performed a manual verification
described in Sec. 3.5, through which we established that the accuracy of developers’ identities has
a 95% confidence interval of [0.99, 1].

3.2.2 Identifying Paid Developers. As mentioned earlier, determining whether a developer is paid
or a volunteer is not straightforward because developer affiliations are not directly recorded in
Git commits [109], and the Rust community does not have an official record of its contributors’
affiliations. We followed approaches used in other studies [16, 70, 116]. We first identified a de-
veloper’s affiliation at the time of each commit they made to Rust by the domain of their email
address. More specifically, if a developer uses an email with a free or general provider domain,
such as “gmail.com”, we consider them to be a volunteer. We used a list of free email provider
domains maintained in GitHub [48], which has been verified and used in other studies [96, 110], to
identify volunteers in the Rust project. Similarly, we assumed that every developer using an email
registered at a company or organization domain is a paid developer. For example, if a developer
used an email that ends with “@mozilla.com”, they were classified as a Mozilla employee, i.e., a
paid developer in Rust.

While this method works in many cases, this technique is not perfect. Paid developers might use
a personal email address to submit commits, even when they do so on their employer’s behalf—or,
indeed, vice versa. To improve the accuracy of developer affiliations, we conducted additional
checks by searching the Internet (using “Rust” and the developer’s name as keywords) and inspected
the first 20 results. We analyzed pages from LinkedIn or Rust’s official website, or the developer’s
personal homepage if it were accessible, to determine whether a developer is a volunteer or
paid to make contributions to Rust. Specifically, we carefully reviewed all content related to their
involvement in Rust, with particular attention to their affiliations and the corresponding timeframes.
When conflicting signals appeared—for example, a developer committing via a company email but
declaring themselves as a volunteer—we chose to respect the developer’s self-declaration. We used
this process to manually validate the top 500 developers in our dataset, ordered by the number
of commits, who together made 100,136 (87.9%) commits. In only 17 cases (3.4%), we identified

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 9

discrepancies, i.e., developers contributing with a corporate email address, while they specified on
their résumé to be a volunteer contributor to Rust. In those cases, we registered their affiliation
as “volunteer” and checked all developers with the same domains. Finally, we also performed a
manual verification with developers described in Sec. 3.5 and obtained a 94.3% accuracy.
In our dataset, we identified 250 paid developers from 55 companies. Among them, Mozilla

employed 54 developers who contributed approximately 23% of all commits, making it the largest
corporate contributor to Rust apart from volunteers.

3.3 Comparing Paid and Volunteer Developers
To address RQ1, we conducted a series of analyses that sought to determine whether paid and
volunteer contributions to Rust differ, considering three metrics: contribution frequency (H1),
change size (H2), and task categories (H3).

3.3.1 Measuring Contribution Performance. Contribution frequency was measured by the number
of commits submitted by a developer within a fixed time frame. Following previous studies [69, 96,
97], we set the time frame to be one month, i.e., if a developer has contributed 100 commits during
3 months, their contribution frequency will be 33.3 (= 100

3). We measure change size by a widely
used metric [89, 97, 105]: lines of code (LOC) in a commit, calculated by the sum of added and
deleted code lines. For each developer, we took the median of the LOCs of all contributed commits
to represent their change size.

To determine the type of work carried out in a commit, we adopted the classification of dos Santos
and Figueiredo [27]: ‘feature,’ corresponding to new feature introduction; ‘corrective,’ related to fault
fixing; ‘perfective,’ based on system improvements; and ‘non-functional,’ referring to documentation
and non-functional requirements. We used their model, which uses natural language processing, to
classify the commits in our dataset. While other models exist, we used this model because it has a
high F-measure (91%) and is well documented. The output is a list of commit types. The model only
assigned the ‘unknown’ label to 553 (0.5%) commits, most of which have an uninformative message,
such as “Apply suggestions from code review.” When analyzing developers’ task preferences, we did
not consider commits labeled as ‘unknown.’ We validated the performance of the classification
model by randomly selecting 150 commits (error margin: 8%, confidence level: 95%) and manually
labeling by two of the authors. The results show that 84% of commits are given the same labels
from both the classification model and the manual validation. The high consistency demonstrates
the fit of the classification model we selected.

3.3.2 Classifying Developer Roles. The distribution of contributions in OSS projects frequently
follows the Pareto principle [36, 65, 109]: a relatively small group of developers (the core) drives
most of the work, while a larger group of contributors (the periphery) contributes a considerably
smaller amount. While the distribution between these two groups varies, Mockus et al., who first
observed this, identified a typical 80/20 distribution [65]. Independent of whether developers are
paid or volunteers, they may be core or peripheral contributors. Instead of comparing paid and
volunteer developers at a superficial level, we answer RQ1 at a finer granularity by comparing paid
and volunteer developers for each group, i.e., core and peripheral.

We adopt the widely used core-periphery structure [36, 96] to classify developers’ roles based on
the commit-based heuristic [17, 46]. Core developers are deemed to account for 80% of the commits
in Rust. The remaining developers are classified as peripheral developers.

3.3.3 Comparing Differences. Based on the measures of contribution frequency, change size, and
task categories, we explored the three hypotheses posited above to answer RQ1. Given the non-
normal distribution of the data, we used the non-parametric Mann–Whitney U test [60] to test

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

10 Zhang et al.

for differences between paid developers and volunteers in different role groups (i.e., core and
peripheral). To reduce false discoveries brought by multiple hypothesis testing, we adjusted all
p-values using the Benjamini-Hochberg correction method [6]. We also report the effect size [32],
which assesses the strength of the relationship between investigated variables. We used the library
statsmodels for Python to calculate these statistics.

3.4 Measuring Collaborations with Social Network Analysis
To address RQ2, we investigated whether paid developers and volunteers work in an isolated way
or collaborate when contributing to the development of Rust. We applied social network analysis to
answer this research question, with developers represented as nodes, and collaborations as edges
between those nodes. Prior studies model developer collaborations based on social connections
found in software development artifacts, such as commits [110], code reviews [51], and issue reports
[61]. As evidenced by Meneely andWilliams [62], developer collaborations as measured by commits
to the same source code file are well reflected in developer perceptions when compared with other
development activities; that is, this measure is consistent with developers’ observations. Thus, in
this study, we also selected the commit data to model developers’ collaborations. Based on the
same principle, and following other studies conducting social network analysis [62, 89, 110], we
considered the existence of collaboration if two developers changed the same file within a period
of one month (not considering any commits that were reverted, as we noted in Sec. 3.1). We used
the number of files that were edited by two developers as the weight of the edge connecting those
two developers, indicating the frequency of collaboration.
The generated network contained 3,887 nodes (i.e., developers), including 250 paid developers,

3,637 volunteers, and a total of 46,551 edges between these nodes. We measured collaboration by
calculating the percentage of paid developers and volunteers in each developer’s direct neighbor
nodes (i.e., collaborators). The number of collaborations is the sum of weights on the edges of
the built social network. We followed the same procedures used to address RQ1, dividing paid
developers into core and peripheral groups to provide a detailed comparison of their collaboration
likelihood to validate H4: Paid developers tend to collaborate less with volunteers. For each group, we
employed two complementary approaches to measure paid developers’ collaboration likelihood:
macro-level and micro-level measurements.
At the macro level, we used the Wilcoxon signed-rank test [99] to compare the likelihood of

collaboration between paid developers and volunteers versus that among paid developers. This
non-parametric test captures overall tendencies across the Rust project, helping us detect whether
paid developers generally collaborate more with other paid developers or volunteers.
At the micro level, given the imbalance in the distribution of paid and volunteer developers

across the network, we constructed a permutation-based null model [30] to assess whether the
observed collaboration with volunteers is stronger or weaker than would be expected by chance.
Specifically, randomly shuffled the paid/unpaid labels of developers 1,000 times while preserving the
underlying network structure [30, 74]. For each randomized instance, we calculated the proportion
of paid developers’ collaboration involving volunteers, and compared the observed value to this
null distribution using a z-score and a one-sided p-value.

3.5 Modeling Long-Term Contributors
Following Zhou et al.’s [114] definition of LTCs,3 we characterized a contributor as an LTC if:

• they have contributed to Rust for 3 years or more, and

3defined as: “A participant who stays with the project for at least three years and is productive [114].”

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 11

• they rank in the top 20% in terms of number of commits in at least three years.4

Both requirements should be satisfied. We found that 1,508 out of 4,117 developers (36.6%) joined
Rust less than three years at the time of the study, and thus, we could not assess whether they
would become an LTC (based on the definition above); thus, we removed these developers from the
analysis.

After determining whether a developer has been an LTC, we fit logistic regression models [44]
to investigate the association between being paid or not, and the likelihood of becoming an LTC,
and report the effect size of the independent variable with odds ratio. Previous studies [114, 115]
have found that a newcomer’s development ability, willingness to participate, and the environment
at the time of joining are associated with the likelihood of becoming an LTC. Following previous
work [114, 115], we measured a new contributor’s willingness and ability by the number and types
of tasks (e.g., the willingness and ability to fix bugs are stronger than writing documents [114, 115]).
Moreover, we extend the measurement of contributors’ willingness and ability to change size
(measured by LOC) because submitting large code changes may require huge efforts (what we
would call ‘strong willingness’) and can also convey a developer’s ability. Since all developers
share the same environment (i.e., Rust community), we excluded the environment factor. The
remaining measures are calculated based on the commit data of developers during their first month
of participation in Rust, as we sought to investigate whether being paid is linked to the probability
of a newly joined contributor becoming an LTC.

3.6 Volunteers’ Views on Paid Developers
The quantitative comparison of paid developers and volunteers presented in the previous sections
can convey behavioral differences. How OSS volunteers perceive paid developers cannot be deter-
mined from archival data, but clearly plays a role in whether their collaboration is harmonious or
subject to conflict. Therefore, we conducted a survey study to gain insight into how volunteers
perceive paid developers in Rust while focusing on the five hypotheses. The survey included both
closed and open-ended questions and required approximately five minutes to complete. The re-
mainder of this section outlines the question design, pilot testing, recruitment process, and analysis
of responses.

3.6.1 Questions. The survey sought to establish volunteer developers’ perspectives on paid devel-
opers within Rust. Specifically, we asked whether respondents agreed with the five hypotheses
(using a 5-point Likert scale, with anchors 1=Strongly disagree and 5=Strongly agree) [49] and
their perspectives with an open-ended question.

As part of the survey, we also conducted a validation of developer identities. Following previous
work [109], we adopted a less intrusive approach, i.e., for each unique pair of a developer’s identity
and affiliation, we randomly selected one commit and recorded the affiliation (or labeled as “volun-
teer”). We then asked respondents to either confirm or refute that these commits were done by
them with the given pair of identity and recorded affiliation.

The lead investigator’s institution did not require ethics approval for this study, and so while we
did not have a formal study ethics application approved, we followed established best practices.
Respondents were informed of the purpose of the study, and of the voluntary nature of participation.
No personally identifiable information was collected. The collected data were stored securely with
multi-factor authentication. All responses were treated anonymously, and we ensured that no
respondent could be identified through our reporting.

4The Pareto principle (20/80) phenomenon have been frequently encountered in software engineering [65, 109, 113], and so
we deem 20% a reasonable threshold.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

12 Zhang et al.

3.6.2 Pilot Study. We conducted a pilot with five randomly selected developers first. One of the
contacted developers is the Executive Director of the Rust Foundation, who offered to help us by
encouraging developers who received the survey invitation to participate. Based on the feedback
from the pilot, we added minor changes in some key terms in the hypotheses, such as adding the
sentence “(namely, staying for a relatively long time and making significant contributions)” to
explain what a long-term contributor is, and refining collaboration to working on the same code
modules or files.

3.6.3 Survey Respondents and Responses. We randomly selected 350 developers from those who
were ranked in the top 20% by their commit count, with an error margin of 5% and a confidence
level of 95%. We did not exclude paid developers at this point, allowing us to check the affiliations of
developers, if indeed they were paid. Among the 350 survey respondents, 59 were paid developers.
We then sent the revised survey to the 350 selected developers; of those, 122 emails were not
delivered.

After two months, we obtained a total of 53 replies (a response rate of 23.2% (53
350−122)), of which

five responses came from paid developers. Since we sought to understand volunteers’ perceptions
of paid developers’ participation in Rust, only the volunteers’ level of agreement on the five
hypotheses and further explanations are considered for answering RQ4. The five responses from
paid developers were used only to validate their identities and affiliations; one of them indicated a
different affiliation that was manually corrected.

3.6.4 Qualitative Analysis. We followed the guidelines by Seaman [86] to code developers’ expla-
nations of their agreements with the five hypotheses:

(1) Initially, two investigators thoroughly read the original responses. After getting a comprehen-
sive understanding of the collected open-ended answers, we examined developers’ responses
sentence by sentence and transformed key phrases into concise labels as initial codes. Table 1
shows a coding example.

(2) Within our established set of codes, we revisited the meaning of each code and merged codes
that had overlap. For instance, we discovered that “more working hours” and “full-time job”
both suggested that paid developers have more time to make contributions to Rust, then we
merged them into one code “more time.”

(3) To minimize the impact of personal bias, a series of face-to-face meetings were conducted
(approximately 4 sessions, each lasting 20 minutes or more) to discuss the coding results and
resolve any variance in coding. Through this process, we found agreement in the final set of
categories of responses listed in Tables 4-8.

We provided the coding data and step descriptions in the online appendix [108].

Table 1. Example of open coding developer responses

Response text Codes

“Volunteers usually develop for fun. Obviously, implementing
features is more exciting than fixing bugs. Developers are paid
to develop Rust because Rust is critical to their company. So, it is
more likely that paid developers fix bugs and do non-functional
improvements according to the needs of the company.”

Volunteers develop for fun;
non-functional improvements;
Paid developers follow the com-
pany’s needs

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 13

3.7 Analysis of Developer Emotion when Volunteers are Hired
It is common for companies to hire volunteers who are established contributors in OSS projects
that companies are interested in. In our initial investigation of Rust forums, we observed several
discussions about this phenomenon. RQ5 explores how people react when organizations hire Rust
volunteers. To this end, we first collected comments in the posts that discuss the role transition from
volunteers to paid developers; we then conducted an emotion analysis based on these comments.
Within the dataset constructed in Sec. 3.1 and 3.2, we identified 30 developers who had role
transitions, and among them, 24 had transitioned from volunteers to paid developers. For each
developer, we sought to collect background information regarding their transition; using Google’s
search engine, we used a search string composed of the developer’s name, the term ‘Rust,’ and the
company that hired them. We visited the top 20 links to collect any posts and discussions about the
hiring of this developer by the given company. We also performed snowball sampling [72] based
on the selected links. Specifically, if any comments linked to other posts about Rust volunteers
becoming paid developers, we collected those online records too. We stopped retrieving when no
new relevant links could be found. In this process, we identified 12 relevant posts, each containing
between 6 and 166 comments (see Table 2).
Seven posts were from Reddit,5 three posts from Hacker News,6 and two posts published on X,

formerly known as Twitter. For each post link, we applied Requests [19], a popular HTTP library
for Python, to retrieve the comments of the selected posts. This procedure led to a total of 650
comments.
Following other studies [10, 83], we applied a DistilRoBERTa-based model [39] to classify any

emotions within the collected comments. This model has been trained on a combination of six
diverse datasets and can predict English text data into Ekman’s six basic emotions [29], plus a
neutral class: anger, disgust, fear, joy, neutral, sadness, and surprise. Specifically, we leveraged the
public API of HuggingFace7 to detect the emotions. We also validated the accuracy of the classified
emotions. Specifically, we randomly selected 100 comments, and two investigators manually labeled
any emotions in these comments. The results show that only for 17 comments, human-assigned
labels were different from those assigned by the DistilRoBERTa-based model. The consistency rate
(83%) indicates the emotion analysis tool is reliable to a certain extent. We provide the collected
comments and identified emotions in our online appendix [108].

4 Results
4.1 Contributions of Paid and Volunteer
To compare paid and volunteer contributors, we first divided developers into two groups (see
Sec. 3.3): peripheral and core, and then compared paid developers with volunteers on three metrics
in each group: contribution frequency, change size, and task preference. Only a small portion of
developers that are classified as core, 7.0% (272), is responsible for 80% of commits in Rust. The
proportion of paid developers in the core group (20%, n=55) is higher than in the peripheral group
(5%, n=195). We analyzed the comparison of contributions between paid and voluntary developers
for each group as follows.

4.1.1 Peripheral Developers. We compare the contribution behavior of paid and voluntary develop-
ers in the periphery group on contribution frequency, change size, and task preference. The left pair
of boxplots in Figure 2 shows that the distribution of contribution frequency of volunteers and paid
5https://www.reddit.com/
6https://news.ycombinator.com/news
7A popular community that helps users build, deploy, and train machine learning models.https://huggingface.co/j-hartmann/
emotion-english-distilroberta-base

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

https://www.reddit.com/
https://news.ycombinator.com/news
https://huggingface.co/j-hartmann/emotion-english-distilroberta-base
https://huggingface.co/j-hartmann/emotion-english-distilroberta-base

14 Zhang et al.

Table 2. Overview of the 12 posts about volunteers’ transition to paid developers

Source Post subject No.
comments Illustrative comment Emotion

Reddit [Name] joins the Rust
team as a full-time devel-
oper

6 “Awesome. He had been a super productive
contributor already.”

Surprise

AWS hires Rust compiler
team co-lead [Name]

6 “Do you work for Amazon? If so, do you
know if they hire remote?”

Neutral

Themore things change... 29 “Good luck working at Amazon, I’ve heard a
lot of horror stories so hope [Name] comes
out okay.”

Fear

[Name] heading up Face-
book’s Rust team

70 “I’m really happy to see the significant wave
of people joining FAMAG companies to work
on Rust full time.”

Joy

[Name] working fulltime
on the compiler at AWS

20 “Oh, right, I remember seeing the announce-
ment!”

Surprise

Starting at PingCAP 7 “PingCAP database looks very nice already. It
is great they can hire good profiles like you!”

Joy

[Name] is stepping back
from the Rust core team

9 “Only because he wants to focus more heav-
ily on other Rust things though: ... as lead of
the language design team and tech lead of
the AWS Rust Platform team.”

Neutral

Hacker
News

Rust [Name] is now at
Apple working on Swift

61 “I have heard rumors that someone (I have no
idea who) has been fired from Apple for con-
tributing to Rust without permission a while
back. Some employers do not like employees
doing things on the side without permission.”

Disgust

AWS hires Rust compiler
team co-lead [Name]

166 “It’s great that AWS wants to have the Rust
team onboard, but in my experience, at least
AWS has been good at leeching Open Source,
rather than fostering it. Open source isn’t
part of their culture.”

Sadness

How the AWS team will
contribute to Rust’s suc-
cess

72 “No offense to [Name], but this is a com-
pletely vacuous post without a single con-
crete promise. I don’t really see the point,
except for PR, recruiting or internal signal-
ing.”

Anger

X [Name] joining @Mi-
crosoft to work on the
@rustlang...

95 “Congratulations!” Neutral

[Name] joining @Cloud-
flare as a systems engi-
neer...

109 “That’s awesome congrats and it’s nice to see
a go heavy shop adopting rust.”

Joy

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 15

Peripheral Core
0

10

20

30

40

#C
om

m
its

 p
er

 m
on

th

Volunteer
Paid

Fig. 2. Contribution frequency distributions of paid
developers and volunteers in the two groups.

Peripheral Core
0

10

20

30

40

50

60

Lin
e

of
 C

od
e

Volunteer
Paid

Fig. 3. LOC distributions of paid developers and vol-
unteers in the two groups.

Feature Corrective Perfective Nonfunctional
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 R
at

io

Volunteer
Paid

Fig. 4. Task distributions of peripheral developers.

Feature Corrective Perfective Nonfunctional
0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 R
at

io

Volunteer
Paid

Fig. 5. Task distributions of core developers.

developers is similar. Specifically, the median frequency for both peripheral volunteers and paid
developers is 1 commit per month. A Mann-Whitney U test [60] indicates there is no statistically
significant difference (p = .20). Thus, H1 is not supported for developers in the periphery.
The first paired boxplots in Figure 3 show the LOC distribution of peripheral volunteers and

paid developers. Specifically, the median LOC of commits contributed is 12 for volunteers, and 15
for paid developers in the peripheral group. A Mann-Whitney U test to assess the significance of
the difference between peripheral paid developers and volunteers in terms of the LOC distributions
shows a statistically significant difference (adjusted p = .009), although with a small effect size8 of
.11. The results indicate that peripheral paid developers tend to contribute a bit larger code changes
to OSS projects than peripheral volunteers, in support of H2.

Figure 4 shows the distribution of four task ratios of voluntary and paid developers in the periph-
eral group. In the median, 25% of commits contributed by peripheral paid developers implement
features (nearly zero for volunteers); we observe statistical differences between the percentage
distributions of features contributed by volunteers and paid developers (adjusted p < .001 and
effect size = .20). Further, we can see that perfective commits has the highest ratio in both paid
and voluntary developers: in the median, 33.3% of the paid developers’ commits are perfective
(50.0% for volunteers). These results indicate that, while developers spend most of their time on

8effect size ≥ 0.1 (small) ≥ 0.3 (medium), and ≥ 0.5 (large) [32].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

16 Zhang et al.

improving code, paid developers tend to contribute slightly more towards features when compared
to volunteers in the peripheral group. These results support H3.

4.1.2 Core Developers. Among the 272 core developers, 55 are paid developers and 217 are vol-
unteers. The right paired boxplots in Figure 2 present the contribution frequency distribution of
core voluntary and paid developers. When compared with peripheral developers, both paid and
voluntary developers in the core group have a higher frequency; the median number of contributed
commits per month is 4.4 for volunteers and 8.5 for paid developers. This difference is significant
(adjusted p < .001) with a medium effect (= .43), and suggests that paid core developers tend to
contribute more frequently than volunteer core developers of Rust. These results lend support to
H1 in the core group.
The second pair of boxplots in Figure 3 shows the LOC distributions of paid and voluntary

developers in the core group. Both distributions have similar median and average values. For
example, core developers, whether they are paid or volunteer, contribute commits with a median of
23 edited lines of code. The result (p=.63) indicates there is no support for H2 for core developers.
We also compare the four task distributions of core contributors, as shown in Figure 5. In the

median, the most common task is ‘perfective’ for both paid and volunteers, followed by feature
and corrective commits; non-functional tasks account for the smallest proportion of their commits.
A Mann–Whitney U test [60] of feature distributions obtains a p=.80, indicating that there is no
significant difference between paid and voluntary developers. Thus, H3 is not supported for core
developers.

Summary for RQ1: Paid developers and volunteers differ in their contribution behavior: paid
core developers tend to contribute more frequently to Rust than volunteer core developers;
peripheral paid developers tend to contribute bigger commits and focus more on implementing
features when compared to peripheral volunteers.

4.2 Collaboration between Paid Developers and Volunteers
We use social network analysis to explore whether being paid affects development collaboration
in Rust to test H4. Similar to how we addressed RQ1 in Sec. 4.1, we divide paid developers into
peripheral and core groups, and then compare their collaboration likelihood with volunteers or
paid developers in both macro and micro perspectives.

Peripheral Core
0

2

4

6

8

10

Lo
g-

tra
ns

fo
rm

ed
 C

ol
la

bo
ra

tio
ns

Paid developers
Volunteers

Fig. 6. Paid developers’ collaborations with other paid developers (green box) and volunteers (pink box) across
two groups: peripheral paid developers and core paid developers.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 17

Based on the collaboration network we built in Sec. 3.4, for each paid developer, we counted
the number of collaborations they had with volunteers and paid developers, respectively. Figure 6
shows the collaboration distribution of paid developers with volunteers and other paid developers,
organized by peripheral and core paid developers. Across both groups, paid developers tend to
collaborate more with volunteers. Specifically, in the median, peripheral paid developers tend
to collaborate three times with other paid developers and 8.5 times with volunteers; core paid
developers collaborate 3.4 times more with volunteers than with paid developers (468 vs. 139).
At the macro level, we compared the differences between the collaboration of the two groups’

paid developers with volunteers and paid developers using the Wilcoxon signed-rank test [99]. The
results show that both groups of paid developers are more inclined to collaborate with volunteers
when compared with paid developers (all p-values < 0.0005). One possible reason may lie in the
uneven distribution of volunteers and paid developers in the Rust community. Specifically, the
number of volunteers is 15 times that of paid developers. Thus, we further performed a permutation-
based analysis at the micro level. The results confirm that the observed level of paid developers’
collaboration with volunteers is significantly lower than expected under the null model. Specifically,
core paid developers exhibit an observed collaboration ratio of .73 compared to a randomized
mean of .93 (z = −1.36, p = .02), while peripheral paid developers show an even stronger deviation
(observed = .65, randomized mean = .93, z = −6.31, p = .001). These results indicate that although
paid developers appear to collaborate frequently with volunteers overall, their actual preference
is weaker than expected under random mixing, especially for peripheral contributors. Based on
the results, we conclude that while the macro-level analysis does not support Hypothesis 4, the
micro-level analysis provides supporting evidence.

Summary for RQ2: Although paid developers appear to collaborate more with volunteers
overall, permutation-based analysis reveals that, at the micro level, their collaboration with vol-
unteers is weaker than expected given the skewed distribution of paid and volunteer developers
in Rust.

4.3 Becoming Long-Term Contributors
We now address RQ3; in Sec. 2.3, we hypothesized H5: Paid developers are less likely to become
long-term contributors. To evaluate this, we applied a logistic regression model.
We considered two other factors that could have an impact on the probability of becoming an

LTC: new joiners’ willingness and ability during the first month of contributing to Rust. We used
the commit type with the most commits, the number of contributed commits (i.e., the contribution
frequency), and the change size (median LOC in all commits) to measure a developer’s willingness
and ability. We introduced detailed measurements of these factors in Sec. 3.5. Before fitting the
attributes in the model, we calculated correlations but found no evidence of collinearity. Developers
who joined Rust after 2018-12-16 were excluded because it would be impossible to determine
whether or not they are LTCs at the time of our analysis. The regression is:

isLTC ∼ Being Paid + Contribution Frequency + LOC + Task Type

Table 3 shows the results of the fitted model. The p-value of this model is < .001, indicating the
regression is statistically significant [67]. The positive coefficient and p-value of Being Paid indicate
that paid developers tend to have a higher probability of becoming long-term contributors when
compared with volunteers, contradicting our hypothesis. One reason might be that paid developers
have a secure income, a lack of which is a common reason for volunteer turnover in OSS projects
[31, 45]. The positive relationship indicates an opportunity to cultivate long-term OSS contributors.
Further, future studies aiming to predict LTCs should consider whether contributors are being

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

18 Zhang et al.

Table 3. Results of the logistic regression model (n=2,609)

Variable Coefficient Standard error z Pr(>|z|)

(Intercept) −4.90 0.41 −11.95 0.00
Being Paid 1.55 0.25 6.29 0.00
Contribution Frequency 0.82 0.12 6.91 0.00
LOC 0.17 0.11 1.59 0.11
Corrective −0.16 0.34 −0.48 0.63
Perfective 0.08 0.29 0.29 0.77
Nonfunctional −0.01 0.58 −0.02 0.99
* LLR p-value = 2.96e-23; Pseudo R-square = 0.13.

paid. Another reason may be related to the initiation history of the Rust project: Rust began as
a personal project in 2006 by Mozilla employee Graydon Hoare, and Mozilla officially sponsored
the Rust project in 2009 and assigned over a dozen engineers to work on Rust full time [98]. Thus,
this group of paid developers from Mozilla may perhaps more easily become LTCs, which may
explain the positive coefficient and p-value of Being Paid and isLTC. Developers employed at other
companies than Mozilla may not become an LTC as readily.

As expected, Contribution Frequency is statistically significant, suggesting that the participation
frequency in the first month is an indicator of becoming an LTC in Rust. Contributing more commits
demonstrates the willingness and ability of newcomers, which are two factors in becoming LTCs,
and is consistent with prior work [115]. Surprisingly, Task Type is not statistically significant,
suggesting that in the context of commits, the type of contributions does not influence whether
newcomers become LTCs.

Summary for RQ3: Being paid is positively associated with becoming a long-term contributor
in the Rust project, contrary to our hypothesis.

4.4 Volunteers’ Perceptions of Paid Developers
To address RQ4, we solicited volunteers’ perspectives on paid developers’ contributions in terms of
the five hypotheses (see Sec. 2). Tables 4 to 8 present the results, where ‘M + N’ in the first formula
represents the number of respondents who selected ‘strongly agree’ and ‘agree’ (and similarly,
‘strongly disagree’ and ‘disagree’), respectively. We group the reasons for ‘strongly agree’ and
‘agree’ together, and the same for ‘strongly disagree’ and ‘disagree.’ A single response could include
multiple reasons, which is why the sum of reasons can be higher than the number of respondents
per option.

Table 4 shows the synthesized reasons for respondents’ level of agreement with H1. More than
half (33, 68.8%) of respondents agreed with H1, though reasons varied. Only five respondents (10.4%)
indicated disagreement towards H1, and ten respondents remained neutral. For the responses
supporting H1, “having more time” (including both working hours and spare time) is the most
common reason. Further, respondents also pointed out that clear goals and obligations of paid
developers force them to contribute more frequently. Developers holding opposing or neutral
views indicated that task difficulty, personal choice, passions, and experiences can also affect
developers’ contribution frequency. The quantitative analysis showed that being paid only has a
significant difference when developers are core members of Rust. This may indicate that only core
paid developers can fully work on Rust, while this is not the case for most paid developers in the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 19

periphery. However, 68.8% of respondents agreed with H1, suggesting that most volunteers have a
higher expectation of paid developers’ contribution frequency.

Table 5 shows the synthesized reasons for the respondents’ level of agreement with H2. Twenty-
one (43.8%) respondents agree with H2, the same number of respondents hold a neutral stance,
and six (12.5%) respondents disagree with H2. The most mentioned supportive reason (n=15) for
H2 is similar to H1: paid developers have more time to prepare big code changes. Six respondents
(four ‘agree’ and two ‘neutral’) pointed out that paid developers are assigned to work on specific
features, which usually end up with large code dumps. The most common reasons for the ‘Neutral’
and ‘Disagree’ options are the same, i.e., the scale of commits is mainly determined by developers’
personal style. One respondent indicated that paid developers tend to make more small changes. The
quantitative analysis indicated that only peripheral paid developers tend to contribute a bit larger
code changes to OSS projects than peripheral volunteers. This indicates that core paid developers
are suffering from an undeserved stereotype of contributing large chunks of code from over 40% of
volunteers.

Table 6 shows volunteers’ perspectives towards H3, namely that paid developers focus primarily
on adding new features. Most (n=22, 45.8%) respondents remained neutral, 14 (29.2%) respondents
indicated agreement, and 12 (25.0%) disagreed with this. For those agreeing, respondents pointed
out that implementing features will gain more recognition from an employer than other types of
contributions, such as writing documentation, and companies’ needs from OSS projects are usually
adding specific features. Features usually require considerable time to be designed, tested, and
implemented. “Having more time” is another reason (3 ‘Agree’ and 1 ‘Neutral’ mentioned this). These
reasons may explain the quantitative results for RQ1, i.e., why peripheral paid developers are more
inclined to contribute features when compared with volunteers. Eight respondents who selected
‘Neutral’ or ‘Disagree’ held the view that, whether or not paid developers prefer implementing
features “varied with assignments” : some are paid to work on Rust in a way they see fit; others are
paid to implement specific features. This reason was also mentioned in their perspectives of H1 and
H2. Four volunteers who disagreed with H3 believe that paid developers tend to “do boring work
nor interesting features,” which also shows some volunteers’ prejudice against paid developers.

We also collected and analyzed developers’ perspectives on H4 related to paid developers’ collabo-
rations with volunteers. Most (n=26, 54.2%) respondents disagree with H4, i.e., paid developers tend

Table 4. Volunteers’ responses to H1: Paid developers contribute more frequently than volunteers

Option Reasons n

Agree
(33=12+21, 68.8%)

Have more time to contribute 22
Clear goals reduce time to determine tasks 8
Obligation forces frequent contributions 5
No explanation 7

Neutral
(10, 20.8%)

Depend on various factors 2
Mostly do proprietary projects 1
No explanation 7

Disagree
(5=1+4, 10.4%)

Mostly do proprietary projects 2
Varies with assignment type 1
Personal choice 1
Depend on task difficulty 1
Paid developers tend to be more senior, do more management 1

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

20 Zhang et al.

Table 5. Volunteers’ responses to H2: Paid developers may contribute larger chunks of code in commits.

Option Reasons n

Agree
(21=7+14, 43.8%)

Have more time to prepare big code changes 15
Adding features requires large code changes 4
No explanation 5

Neutral
(21, 43.8%)

Personal choice 7
Adding features requires large code changes 2
Have limited time to prepare large changes 1
Depends on projects 1
No explanation 11

Disagree
(6=1+5, 12.5%)

Personal choice 2
Varies with assignment type 1
Do more small changes 1
No explanation 2

Table 6. Volunteers’ responses to H3: Paid developers are more likely to contribute features than volunteers.

Option Reasons n

Agree
(14=2+12, 29.2%)

Implementing features is more fruitful 4
Company’s needs are new features 4
Have more time to implement features 3
No explanation 4

Neutral
(22, 45.8%)

Varies with assignment type 5
Have no preference 3
Personal choice 3
Have more time to implement features 1
No explanation 10

Disagree
(12=7+5, 25.0%)

Do boring work nor interesting features 4
Varies with assignment type 4
No explanation 5

to collaborate less with volunteers. We categorized the collected reasons into three types: (1) Eight
respondents (16.7%) believe that paid developers have no preference for either type of contributor to
collaborate with. A developer’s techniques and skills may determine who will be their collaborators.
(2) Seven respondents indicated that H4 does not correspond with their experience in Rust because
they see volunteers and paid developers collaborate together. (3) Two respondents believe that the
Rust community supports collaboration between volunteers and paid developers. Nine respondents
did not provide any explanation. Twelve respondents (25%) agreed with H4. The most common
reasons for agreement are that paid developers prefer to collaborate with developers from the same
company, and they have no interest in the type of work that volunteers primarily do in Rust, such
as documentation and maintenance. Ten respondents remained neutral; seven of those did not
provide any explanations. Combined with the quantitative results indicating that whether paid

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 21

Table 7. Volunteers’ responses to H4: Paid developers tend to collaborate less with volunteers.

Option Reasons n

Agree
(12=2+10, 25.0%)

Prefer collaborate with developers from the same company 5
Not interested in what volunteers mainly do 3
Work is not attractive to others 1
Dayjob hampers collaboration 1
No explanation 2

Neutral
(10, 20.8%)

Varies with assignment type 1
Happen in mentoring situations 1
See volunteers and paid developers collaborate together 1
No explanation 7

Disagree
(26=16+10, 54.2%)

Have no collaboration preference 8
See volunteers and paid developers collaborate together 7
Community is supportive of collaboration 2
No explanation 9

Table 8. Volunteers’ responses to H5: Paid developers are less likely to become long-term contributors.

Option Reasons n

Agree
(7=0+7, 14.6%)

Lack personal attachment 3
Withdrawal after goal achievement 2
Contribute less if unpaid 2
No explanation 1

Neutral
(26, 54.2%)

Becoming LTCs is hard for both 4
Vary with assignment type 3
LTCs first then being paid 2
Contribute less if unpaid 1
No explanation 16

Disagree
(15=9+6, 31.3%)

Being paid ensures long term 4
LTCs first then being paid 2
No explanation 9

developers are peripheral or core to Rust, they collaborate more with volunteers, we can observe
that certain volunteers in the Rust community exhibit some bias against paid developers.
Table 8 shows respondents’ categorized perspectives towards their agreements of H5, that is,

paid developers are less likely to become long-term contributors. Only seven (14.6%) respondents
indicated agreement, and their reasons were in line with our hypothesis: companies may withdraw
from OSS projects once their business goal has been achieved, or changes; paid developers may
lack personal attachment to the OSS projects and may become less active (or even disappear) when
they are no longer paid. More than half of (n=26, 54.2%) respondents held a neutral stance. Fifteen
respondents (31.3%) disagreed with H5: (1) Seven respondents simply indicated this hypothesis
contradicted their experience in Rust (or other OSS projects). (2) Four mentioned that being paid
ensures long-term contributions because of secure income. (3) Two volunteers explained that

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

22 Zhang et al.

developers are usually long-term contributors before being paid by companies. The results of the
regression analysis in RQ3 show that being paid is a significantly positive factor in becoming
a long-term contributor. Reasons such as having a secure income or already being a long-term
contributor may explain the modeling results (see Table 8). Over half of the neutral responses
indicate the need to further study the relationship between being paid and developers’ long-term
participation.

Summary for RQ4: Hypothesis H1 is supported by the majority of respondents: almost 70%
of survey respondents agree that paid developers contribute more frequently than volunteers.
Key reasons are that paid developers have more time, have clear goals, and do so because they
are paid. H2 is not clearly supported, as Ca. 44% of respondents believe that paid developers
contribute larger commits, while ca. 44% is unsure, and the remaining 12.5% disagree. H3
is largely unsupported, with approx. 70% of volunteers were unsure or disagreed that paid
developers focus primarily on adding features. The same for H4 and H5: more than half of the
respondents believe paid developers and volunteers collaborate well in Rust; Only 14.6% of
volunteers agreed that paid developers are less likely to become long-term contributors, ca. 30%
disagreed, and over 54% were unsure.

4.5 Community Emotions When Volunteers Become Paid Developers
To explore how the Rust community reacts when volunteers transition to paid developers, we
retrieved 650 comments from 12 relevant posts, where the numbers of comments range from 6 to
166, and conducted emotion analysis, as introduced in Sec. 3.7. Figure 7 shows the distribution of
the seven identified emotions in the community discussions about Rust volunteers becoming paid
developers. As Fig. 7a shows, ‘neutral’ is the most common emotion (56%). The emotions ‘joy’ and
‘surprise’ account for 31% of the comments. In contrast, we found 13% of the comments express
negative emotions, including ‘disgust’ (7%), ‘sadness’ (3%), ‘anger’ (2%), and ‘fear’ (1%). While
relatively limited in proportion, this does show that some people are concerned about volunteers
being hired by companies to contribute to Rust. The 24 volunteers who subsequently transitioned
to paid positions contributed an average of 142 features, far exceeding the overall average of 11
among all Rust contributors, and 22 of them were core developers. Their strong potential to shape
the project’s roadmap may partly explain the negative emotions observed within the community.
When we consider the distribution of emotions expressed across the three different platforms

(i.e., X (formerly Twitter), Reddit, and Hacker News), the results are a bit more nuanced (see
Figure 7b). The most common emotions are ‘neutral’ in the discussions posted on the platforms
Reddit and Hacker News. Different from comments in posts published on X, the proportions of
negative comments (including ‘anger,’ ‘disgust,’ ‘fear,’ and ‘sadness’) on Reddit and Hacker News
are comparable to the percentages of positive emotions, respectively. Specifically, 19% (28 out of
147) and 12% (37 out of 299) of comments posted on the platforms Reddit and Hacker News express
concern about volunteers being hired by companies to contribute to Rust. For example, one person
commented:

“It’s great that AWS wants to have the rust team onboard, but in my experience, at least
AWS has been good at leeching Open Source, rather than fostering it. Open source is
not part of their culture.”

On X, the dominant emotion is joy (60% (122 out of 204 comments). Upon further investigation
of these comments, we found that the two posts on X are two Rust contributors’ announcements
of joining companies to work on Rust, and most of the ‘joy’ comments are like “Welcome to the
company” from new colleagues and ‘congratulations’ with a high spirit, such as “Tremendously

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 23

exciting, congratulations!” The emotion differences between X and the other two platforms may lie
in their characteristics [4]: X is a social media for sharing short updates, opinions, and news to
the general public and has a diverse user base; Reddit and Hacker News are for community-driven
discussions across various topics and their users are usually from tech-savvy communities focused
on specific interests. Specifically, all seven posts from the Reddit platform are from the ‘r/rust’
subreddit, which is dedicated to discussing things related to the Rust programming language [76]. In
the social media platform, people may be more likely to say something nice, while in the technical
forums, same-interest-driven users are more likely to have in-depth discussions.

neutral
56%joy

24%

surprise
7%

disgust
7%

sadness
3%

anger
2%

fear
1%

(a) Overall emotion distribution.

0% 20% 40% 60% 80% 100%

Reddit

X

Hacker
News

anger disgust fear sadness neutral joy surprise

(b) Emotion distributions in the three sources.

Fig. 7. Emotion distributions in the discussions when volunteers become being paid in Rust

Summary for RQ5: Overall, the main emotion of comments on Rust volunteers becoming
paid by companies is neutral, and approximately 13% of comments express negative emotions,
showing that some people have concerns about commercial involvement in Rust. The developers
who transitioned to paid roles were highly active and influential contributors, whichmay explain
the negative emotions within the community. However, while most comments on Reddit and
Hacker News are neutral, on X emotions are primarily joyful, which may be caused by their
social characteristics.

5 Discussion
This study presents a number of key findings. This section discusses the implications of our findings.

5.1 Community Governing Policies and Interface Design
This study presents the first comparative analysis of paid developers and volunteers within a
single project at a fine level of granularity. Understanding differences between paid and volunteer
contributors can help OSS communities to design better governing policies, and interaction and
collaboration interfaces to support the sustainability of OSS projects. For example, OSS communities
could conduct real-time measurements of the scale and types of commits contributed by peripheral
paid developers. When identifying paid developers who are mainly submitting large features, OSS
communities could emphasize the need for long-term maintenance and the value of making other
types of contributions. For volunteers, a lack of sustained time and stable income is perhaps the
most pressing barrier that keeps them from becoming long-term contributors. Therefore, OSS
communities (and/or hosting platforms) could provide an interface for volunteers who are looking

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

24 Zhang et al.

for companies to support them financially (or employ them) to make contributions to projects and
promote the interface to companies.

5.2 Volunteers’ Perspectives on Paid Developers
The combined quantitative and qualitative results suggest that many volunteers might have some
‘prejudice’ against paid developers, such as “[they] do boring work since [they’re] being paid,” “[they]
rarely care [for] documentation,” and “[they] lack personal attachment.” An unfamiliarity among
developers in OSS projects may cause frustration and possibly conflict between paid developers
and volunteers, jeopardizing a project’s sustainability. Moreover, we also found obvious negative
emotions, such as ‘disgust,’ ‘anger,’ and ‘fear,’ when community members see volunteers become paid
developers. However, we estimated a panel fixed-effects model on 24 developers who transitioned
from volunteer to paid status, most of whomwere core contributors.We compared their contribution
frequency, change size, task preference, and collaboration likelihood before and after the transition.
The results show no statistically significant differences across these measures, suggesting that
becoming paid does not systematically alter developers’ contribution characteristics.9 To mitigate
possible volunteers’ misunderstandings against paid developers, OSS communities could provide
dashboards to visualize companies’ contributions in real time transparently. The dimensions
studied in this article (contribution frequency, change size, task type, collaboration, and likelihood
of becoming a LTC) provide a set of indicators that could be measured.

5.3 Harmonizing Company Participation in Open Source Communities
As suggested in prior work [41, 104] as well as the survey presented in this article, there is a
perception that companies tend to develop big features in-house that are subsequently contributed to
OSS projects. Our quantitative analysis confirms this; peripheral paid developers tend to focus more
on implementing features than do volunteers. However, such contributions require considerable
effort in terms of peer review, adding workload to maintainers of OSS projects who may already face
a considerable workload. Features may directly affect the roadmap of an OSS project. Core volunteer
developers may perceive these contributions as a sign of detachment and lack of ‘care’ for the
project, which could be one reason that corporate participation is disliked by some volunteers [109].
Rust, in particular, reportedly had several core developers who left because of the participation of
Amazon.com [52, 102]. Thus, companies should become more sensitive to the needs and norms of
OSS projects, as well as the volunteers in the project, to avoid being perceived as a commercial
‘parasite.’ The behavior of even a single paid developer may affect how companies are perceived by
volunteers and the wider OSS community. Specifically, the results of RQ2 indicate that although paid
developers seem to collaborate more frequently with volunteers at a global level, their micro-level
collaboration intensity is weaker than expected. This pattern suggests a latent divide between
paid and volunteer contributors. Companies should encourage their employees to actively engage
with volunteers beyond organizational boundaries in an OSS ecosystem. The dashboard mentioned
above can be used as a mirror to inform their OSS strategies and adjust their contributions.
The proportion of paid developers in the core group is ca. 20%, higher than in the peripheral

group, which means companies can be recognized in the Rust project and play a significant role in
its development. Assessing whether a company’s commercial interests align with an OSS project’s
roadmap should be the first step before joining. We suggest that hiring volunteers who are already
contributing to a project to implement a company’s objectives might be a more appropriate and
convenient solution because theymay be better able to balance the community’s long-term concerns
and the company’s business objectives. Nevertheless, companies should pay attention to public

9Detailed results can be found in our online appendix [108]

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 25

opinion toward the volunteer-to-paid transitions. The results of RQ5 show that approximately 13%
of comments on this phenomenon are negative. Since developers who became paid contributors
were among the most active and visible members, transitions of such key figures should be handled
carefully to maintain trust and prevent community tension. We suggest companies solicit OSS
communities’ concerns about their joining and try to address them as much as possible. Moreover,
the different emotion distributions of Reddit/Hacker News/X indicate that community reactions
vary across platforms. Companies and OSSmaintainers should tailor their communication strategies
to the norms and expectations of each social space.

5.4 Implication for Research
It is clear that differences exist across different groups of contributors to an OSS project. This study
sought to go beyond previous characterizations of paid vs. volunteer developers, offering a more
fine-grained analysis. Our results suggest not all paid developers are the same; for example, some
are tasked to implement certain required features, and others make contributions as they see fit.
The latter group may be similar to volunteers but make more frequent contributions, i.e., core paid
developers. This study suggests that the dichotomous characterization of contributors as either paid
or volunteer is too simplistic and does not fully match reality, and that further subcategories could
be identified. Given the important role of OSS in today’s IT landscape, it is imperative to verify
these hypotheses across more types of OSS projects, such as single vendor open source projects
[78] and from other perspectives. One likely perspective appears to be whether developers are
ambitious to pursue a career with the community vs. a career with their company [85]. Increased
awareness of subgroups can support OSS projects in building harmonious relationships between
different groups of developers.

6 Threats to Validity
The design and execution of the current study are the result of a number of trade-offs [81], which
we discuss in this section. These trade-offs should be considered while interpreting the results, and
can also be considered in designing future studies.
External validity. This study focused specifically on the Rust programming language project;

the scope of the findings is therefore limited to this particular context. We decided to study Rust
to allow for an in-depth comparison between paid and volunteer developers who share the same
project context, including corporate involvement and programming language. Future work could
extend this analysis to additional projects within the Rust ecosystem (e.g., ecosystem tools or
popular crates) and across other large-scale OSS systems (e.g., the Linux kernel) to evaluate the
generalizability of the observed patterns and uncover potential variations in corporate participation
and community dynamics.

Another potential threat is the representativeness of our developer sample. Respondents might
be unfamiliar with other paid developers. In the survey, we included a neutral option that provides
respondents with the opportunity to express a lack of opinion or indifference. This could explain
why ‘Neutral’ was the most common answer to H3 and H4. The results from the survey might be
biased toward what developers think they know about paid developers. Moreover, we found some
inconsistencies between quantitative and qualitative responses from developers who remain neutral
in terms of our hypotheses. This may reflect nuanced or context-specific views. We prioritized
quantitative responses for consistency but acknowledge this as a limitation. Future work could
investigate such discrepancies through follow-up interviews or more focused qualitative studies.
The resignation of the entire moderation team and some core developers leaving Rust attracted
considerable attention, and some companies’ dominating involvement has been one of the most

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

26 Zhang et al.

discussed causes [52, 92, 102]. Therefore, the issue of paid developers may loom larger in the Rust
community than in other OSS projects.

The survey received a total of 53 responses (response rate 23.2%); this number and response rate
are similar to other studies of OSS developers [75, 90, 111]. The survey results complement the
quantitative results answering RQ1, RQ2, and RQ3. However, the survey goal was not to generalize
across the Rust project, and so the findings should not be interpreted as such.

Construct validity. We measured developer contribution through commits, as this represents the
key activity in software development. We acknowledge, as did prior studies [105, 109, 116], that
different data sources can be used, including issue reports, code reviews, and online discussions.
We decided to use commit data only because the cleaning of data and accurately attributing it to the
right group (paid, volunteers) is very time-consuming, as it includes a manual check and verification;
we obtained an accuracy of 94.3%. Triangulating across other data sources than commit data remains
an open challenge for future work. Besides, since the initial experiments were conducted in 2022,
we used data up to the end of 2021 to align with the survey period (RQ4). We later extended the
dataset to June 30, 2025 and validated H1–H5, finding consistent results except for H1 (contribution
frequency) in the core group, likely because of Rust’s increasing maturity, which may have naturally
slowed developers’ contribution pace.
A second potential threat lies in distinguishing paid and volunteer developers, which remains

an open research challenge. A developer with a public email address could also be paid. On the
other hand, using the same heuristic of checking email address domains, a developer who is paid
by a company but makes contributions to Rust on their own, may be classified as a paid developer.
However, based on the 53 responses, no developers whom we identified as volunteers, indicated
they were paid, and only one paid developer indicated their employer is another company. Thus,
we deem this threat would have a limited impact, if at all, on the results.

Another decision was our definition of long-term contributors, which required developers to
have contributed at least three years to Rust. This definition was based on prior studies [112, 114].
While this definition required the exclusion of over 1,500 developers (out of 4,117), we argue that
the results remain sufficiently representative. Further, there are other factors, such as social capital
[75] and the specific features of companies that employ paid developers, which could also affect the
likelihood of becoming long-term contributors. In this study, we only considered developers’ ability
and willingness as control variables, leaving other factors to be studied through future studies.

There are various ways in which developers collaborate in OSS projects. In this study, we adopted
co-editing the same file as the primary measure of collaboration, as [62] found that this activity
aligns well with developers’ own perceptions of collaborative work. To validate the findings of RQ2,
we further conducted comparison experiments using a dialogue-based collaboration metric derived
from pull request (PR) interactions, where two developers are considered to have collaborated if
they both commented on the same PR. The results based on PR comments were consistent with
the findings of RQ2, supporting the robustness of our approach. Detailed results and analyses are
provided in our online appendix [108].
Besides the five dimensions we have explored, paid developers can also be different from vol-

unteers in other aspects. For instance, are contributions from paid developers more likely to be
accepted or rejected in Rust? Future studies could conduct more thorough comparisons between
paid developers and volunteers to benefit from a better understanding of the governance framework
of OSS contributors.
By addressing RQ5, we aim to convey how the Rust community reacted when volunteers were

hired by companies. Although we treat people who make any kind of contributions to Rust as a
Rust community member, users giving comments on different platforms may come from other
social networks, such as friends, relatives, or colleagues, who may hardly know Rust. Further, given

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 27

that each platform fosters distinct social norms and audiences, it is plausible that developers adopt
different emotional tones depending on the context. Due to the diversity of accounts and behaviors
in different platforms, it is extremely difficult to distinguish Rust community members from others
or match cross-platform identities. We analyzed the emotion distributions per platform to draw
more precise conclusions. Future work can delve into the roles of these commenters toward Rust
and explore whether the same developers react differently on different platforms. Besides, the role
transition of core developers tends to bring discussions. It indicates that the comments collected
and analyzed to address RQ5 may be biased toward core developers and do not represent the views
of general volunteers being hired.

7 Conclusion
This article presents an empirical comparison between paid developers and volunteers in the
Rust community. We find that paid developers’ characteristics differ from volunteers in several
dimensions. Peripheral paid developers tend to contribute more frequently than volunteers and also
have a stronger focus on features. Nomatter how senior paid developers are, they tend to collaborate
more with volunteers but less than expected. Being paid is a positive factor in becoming a long-term
contributor. Some volunteers hold a skeptical attitude toward paid developers’ contributions in
Rust, which can also be reflected by negative emotions when discussing the volunteer-to-paid
transitions. Overall, paid and volunteer developers each have their characteristics, and core paid
developers may work beyond their duties.

Acknowledgments
This work is supported by the National Natural Science Foundation of China Grant (62572048,
62202048, 62332001, and 62232003), Research Ireland grant 13/RC/2094-P2 to Lero.

References
[1] AdamAlami, Marisa Leavitt Cohn, and AndrzejWąsowski. 2019. Why does code reviewwork for open source software

communities?. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 1073–1083.
[2] Sadika Amreen, Audris Mockus, Russell Zaretzki, Christopher Bogart, and Yuxia Zhang. 2020. ALFAA: Active

Learning Fingerprint based Anti-Aliasing for correcting developer identity errors in version control systems. Empir.
Softw. Eng. 25, 2 (2020), 1136–1167. doi:10.1007/s10664-019-09786-7

[3] Tim Anderson. 2021. Rust dust-up as entire moderation team resigns. Why? They won’t really say. https://www.
theregister.com/2021/11/23/rust_moderation_team_quits/.

[4] Maurício Aniche, Christoph Treude, Igor Steinmacher, Igor Wiese, Gustavo Pinto, Margaret-Anne Storey, and
Marco Aurélio Gerosa. 2018. How modern news aggregators help development communities shape and share
knowledge. In Proceedings of the 40th International conference on software engineering. 499–510.

[5] Ann Barcomb, Andreas Kaufmann, Dirk Riehle, Klaas-Jan Stol, and Brian Fitzgerald. 2020. Uncovering the Periphery: A
Qualitative Survey of Episodic Volunteering in Free/Libre and Open Source Software Communities. IEEE Transactions
on Software Engineering 46, 9 (2020).

[6] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to
multiple testing. Journal of the Royal statistical society: series B (Methodological) 57, 1 (1995), 289–300.

[7] Evangelia Berdou. 2006. Insiders and outsiders: paid contributors and the dynamics of cooperation in community led
F/OS projects. In IFIP International Conference on Open Source Systems. Springer, 201–208.

[8] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swaminathan. 2006. Mining email social
networks. In International Workshop on Mining Software Repositories. ACM, 137–143.

[9] Matthew Broersma. 2006. Debian Delayed by Fund-Raising Fracas. https://www.cio.com/article/265170/linux-debian-
delayed-by-fund-raising-fracas.html.

[10] Sabur Butt, Shakshi Sharma, Rajesh Sharma, Grigori Sidorov, and Alexander Gelbukh. 2022. What goes on inside
rumour and non-rumour tweets and their reactions: A psycholinguistic analyses. Computers in Human Behavior 135
(2022), 107345.

[11] Fabio Calefato, Marco Aurelio Gerosa, Giuseppe Iaffaldano, Filippo Lanubile, and Igor Steinmacher. 2022. Will
you come back to contribute? Investigating the inactivity of OSS core developers in GitHub. Empirical Software

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.1007/s10664-019-09786-7
https://www.theregister.com/2021/11/23/rust_moderation_team_quits/
https://www.theregister.com/2021/11/23/rust_moderation_team_quits/
https://www.cio.com/article/265170/linux-debian-delayed-by-fund-raising-fracas.html
https://www.cio.com/article/265170/linux-debian-delayed-by-fund-raising-fracas.html

28 Zhang et al.

Engineering 27, 3 (2022), 76.
[12] Andrea Capiluppi, Klaas-Jan Stol, and Cornelia Boldyreff. 2012. Exploring the role of commercial stakeholders in

open source software evolution. In IFIP International Conference on Open Source Systems. Springer, 178–200.
[13] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir Filkov. 2015. Developer onboarding in

GitHub: the role of prior social links and language experience. In 10th Joint Meeting on Foundations of Software
Engineering. ACM, 817–828.

[14] Zhifei Chen, Wanwangying Ma, Lin Chen, and Wei Song. 2022. Collaboration in software ecosystems: A study of
work groups in open environment. Information and Software Technology 145 (2022), 106849.

[15] Maëlick Claes, Mika Mäntylä, Miikka Kuutila, and Umar Farooq. 2018. Towards automatically identifying paid open
source developers. In Proceedings of the 15th International Conference on Mining Software Repositories. 437–441.

[16] Maëlick Claes, Mika Mäntylä, Miikka Kuutila, and Bram Adams. 2017. Abnormal Working Hours: Effect of Rapid
Releases and Implications to Work Content. In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). 243–247. doi:10.1109/MSR.2017.3

[17] Jailton Coelho, Marco Tulio Valente, Luciana L. Silva, and André Hora. 2018. Why We Engage in FLOSS: Answers
from Core Developers. In 11th International Workshop on Cooperative and Human Aspects of Software Engineering
(Gothenburg, Sweden) (CHASE ’18). ACM, New York, NY, USA, 114–121. doi:10.1145/3195836.3195848

[18] Rust Community. [n. d.]. The Rust Programming Language. https://github.com/rust-lang/rust.
[19] Requests Community. 2024. Requests: HTTP for Humans. https://requests.readthedocs.io/en/latest/.
[20] Stack Overflow Community. 2022. 2022 Developer Survey. https://survey.stackoverflow.co/2022#section-most-loved-

dreaded-and-wanted-programming-scripting-and-markup-languages.
[21] Jonathan Corbet and Greg Kroah-Hartman. 2016. Linux Kernel Development: How fast it is going, who is doing it,

what they are doing, and who is sponsoring it? (25th Anniversary Edition). Linux Foundation Whitepaper (August
2016).

[22] Jonathan Corbet, Greg Kroah-Hartman, and Amanda McPherson. 2012. Linux kernel development. How Fast it is
Going, Who is Doing It, What They are Doing, and Who is Sponsoring It. The Linux Foundation (2012), 1–13.

[23] Sarah Crowe, Kathrin Cresswell, Ann Robertson, Guro Huby, Anthony Avery, and Aziz Sheikh. 2011. The case study
approach. BMC medical research methodology 11, 1 (2011), 1–9.

[24] Tapajit Dey, Bogdan Vasilescu, and Audris Mockus. 2020. An exploratory study of bot commits. In Proceedings of the
IEEE/ACM 42nd International Conference on Software EngineeringWorkshops. ACM, 61–65. doi:10.1145/3387940.3391502

[25] Luiz Felipe Dias, Caio Barbosa, Gustavo Pinto, Igor Steinmacher, Baldoino Fonseca, Márcio Ribeiro, Christoph Treude,
and Daniel Alencar da Costa. 2020. Refactoring from 9 to 5? What and When Employees and Volunteers Contribute
to OSS. In 2020 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 1–5.

[26] Luis Felipe Dias, Igor Steinmacher, and Gustavo Pinto. 2018. Who drives company-owned OSS projects: internal or
external members? Journal of the Brazilian Computer Society 24, 1 (Dec. 2018). doi:10.1186/s13173-018-0079-x

[27] Geanderson Esteves dos Santos and Eduardo Figueiredo. 2020. Commit Classification using Natural Language
Processing: Experiments over Labeled Datasets. In CIbSE.

[28] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. 2008. Selecting empirical methods for
software engineering research. In Guide to advanced empirical software engineering. Springer, 285–311.

[29] Paul Ekman. 1999. Basic emotions. In Handbook of Cognition and Emotion, Tim Dalgleish and Mick J. Power (Eds.).
45–60.

[30] Damien R Farine. 2017. A guide to null models for animal social network analysis. Methods in Ecology and Evolution
8, 10 (2017), 1309–1320.

[31] Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C Murphy, and Jean-Rémy Falleri. 2015. Impact of developer
turnover on quality in open-source software. In 2015 10th Joint Meeting on Foundations of Software Engineering.
829–841.

[32] Catherine O. Fritz, Peter E. Morris, and Jennifer J. Richler. 2012. Effect size estimates: current use, calculations, and
interpretation. Journal of Experimental Psychology: General 141, 1 (2012), 2–18.

[33] James H. Gerlach, Chorng-Guang Wu, Lawrence F Cunningham, and Clifford E Young. 2016. An Exploratory Study
of Conflict over Paying Debian Developers. International Journal of Open Source Software and Processes 7, 3 (2016),
20–38.

[34] Daniel M German. 2002. The evolution of the GNOME Project. In Proceedings of the 2nd Workshop on Open Source
Software Engineering. 20–24.

[35] Daniel M German. 2003. The GNOME project: a case study of open source, global software development. Software
Process: Improvement and Practice 8, 4 (2003), 201–215.

[36] Mathieu Goeminne and Tom Mens. 2011. Evidence for the pareto principle in open source software activity. In
the Joint Porceedings of the 1st International workshop on Model Driven Software Maintenance and 5th International
Workshop on Software Quality and Maintainability. 74–82.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.1109/MSR.2017.3
https://doi.org/10.1145/3195836.3195848
https://github.com/rust-lang/rust
https://requests.readthedocs.io/en/latest/
https://survey.stackoverflow.co/2022#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://doi.org/10.1145/3387940.3391502
https://doi.org/10.1186/s13173-018-0079-x

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 29

[37] Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abrahamsson. 2018. What happens when software
developers are (un) happy. Journal of Systems and Software 140 (2018), 32–47.

[38] Alexander Hars and Shaosong Ou. 2002. Working for Free? Motivations of participating in open source projects.
International Journal of Electronic Commerce 6, 3 (2002), 25–39.

[39] Jochen Hartmann. 2022. Emotion English DistilRoBERTa-base. https://huggingface.co/j-hartmann/emotion-english-
distilroberta-base/.

[40] Øyvind Hauge, Claudia Ayala, and Reidar Conradi. 2010. Adoption of open source software in software-intensive
organizations–A systematic literature review. Information and Software Technology 52, 11 (2010), 1133–1154.

[41] Joachim Henkel. 2006. Selective revealing in open innovation processes: The case of embedded Linux. Research Policy
35, 7 (2006), 953–969.

[42] James Herbsleb, Christian Kästner, and Christopher Bogart. 2016. Intelligently Transparent Software Ecosystems.
IEEE Software 33, 1 (2016), 89–96.

[43] Guido Hertel, Sven Niedner, and Stefanie Herrmann. 2003. Motivation of software developers in Open Source projects:
an Internet-based survey of contributors to the Linux kernel. Research Policy 32, 7 (2003), 1159 – 1177.

[44] Joseph M. Hilbe. 2015. Practical Guide to Logistic Regression. CRC Press.
[45] Giuseppe Iaffaldano, Igor Steinmacher, Fabio Calefato, Marco Gerosa, and Filippo Lanubile. 2019. Why Do Developers

Take Breaks from Contributing to OSS Projects? A Preliminary Analysis. In 2nd International Workshop on Software
Health (Montreal, Quebec, Canada) (SoHeal ’19). IEEE Press, 9–16. doi:10.1109/SoHeal.2019.00009

[46] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. 2017. Classifying developers into core and
peripheral: An empirical study on count and network metrics. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). IEEE, 164–174.

[47] Corbet Jonathan and Kroah-Hartman Greg. 2017. 2017 Linux Kernel Development Report. https://www.
linuxfoundation.org/2017-linux-kernel-report-landing-page/.

[48] Brian T Jones. 2018. free_email_provider_domains.txt. https://gist.github.com/tbrianjones/5992856/, last accessed 20
Aug 2019.

[49] Ankur Joshi, Saket Kale, Satish Chandel, and D Kumar Pal. 2015. Likert scale: Explored and explained. British Journal
of Applied Science & Technology 7, 4 (2015), 396.

[50] Nicolas Jullien, Klaas-Jan Stol, and James Herbsleb. 2019. A Preliminary Theory for Open Source Ecosystem Micro-
economics. Springer, 49–68.

[51] Noureddine Kerzazi and Ikram El Asri. 2016. Who can help to review this piece of code?. In Collaboration in a
Hyperconnected World: 17th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2016, Porto, Portugal,
October 3-5, 2016, Proceedings 17. Springer, 289–301.

[52] Steve Klabnik. 2021. I refuse to let Amazon define Rust. https://twitter.com/steveklabnik/status/1437441662998007809.
[53] Carsten Kolassa, Dirk Riehle, and Michel A. Salim. 2013. A Model of the Commit Size Distribution of Open Source. In

SOFSEM 2013: Theory and Practice of Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 52–66.
[54] Erik Kouters, Bogdan Vasilescu, Alexander Serebrenik, and Mark GJ van den Brand. 2012. Who’s who in Gnome:

Using LSA to merge software repository identities. In 28th IEEE International Conference on Software Maintenance.
592–595.

[55] Karim Lakhani and Robert Wolf. 2005. Why Hackers Do What They Do: Understanding Motivation and Effort in
Free/Open Source Software Projects. MIT Press, Cambridge.

[56] Amanda Lee and Jeffery C Carver. 2017. Are One-Time Contributors Different? A Comparison to Core and Periphery
Developers in FLOSS Repositories. In ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. IEEE, 1–10.

[57] Amanda Lee, Jeffrey C Carver, and Amiangshu Bosu. 2017. Understanding the impressions, motivations, and barriers
of one time code contributors to FLOSS projects: a survey. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 187–197.

[58] Bin Lin, Gregorio Robles, and Alexander Serebrenik. 2017. Developer turnover in global, industrial open source
projects: Insights from applying survival analysis. In IEEE 12th International Conference on Global Software Engineering.
66–75.

[59] Matthieum. 2022. Moderation Team Resignation. https://www.reddit.com/r/rust/comments/qzme1z/moderation_
team_resignation/.

[60] Patrick E. McKnight and Julius Najab. 2010. Mann-Whitney U Test. John Wiley and Sons, Ltd, 1–1. doi:10.1002/
9780470479216.corpsy0524

[61] Andrew Meneely, Mackenzie Corcoran, and Laurie Williams. 2010. Improving developer activity metrics with issue
tracking annotations. In Proceedings of the 2010 ICSE Workshop on Emerging Trends in Software Metrics. 75–80.

[62] Andrew Meneely and Laurie Williams. 2011. Socio-technical developer networks: Should we trust our measurements?.
In Proceedings of the 33rd international conference on software engineering. 281–290.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/
https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/
https://doi.org/10.1109/SoHeal.2019.00009
https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/
https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/
https://gist.github.com/tbrianjones/5992856/
https://twitter.com/steveklabnik/status/1437441662998007809
https://www.reddit.com/r/rust/comments/qzme1z/moderation_team_resignation/
https://www.reddit.com/r/rust/comments/qzme1z/moderation_team_resignation/
https://doi.org/10.1002/9780470479216.corpsy0524
https://doi.org/10.1002/9780470479216.corpsy0524

30 Zhang et al.

[63] Andrew Meneely and Laurie A. Williams. 2009. Secure open source collaboration: an empirical study of Linus’ Law.
In ACM 2009 Conference on Computer and Communications Security.

[64] CourtneyMiller, David GrayWidder, Christian Kästner, and Bogdan Vasilescu. 2019. Why do people give up flossing? a
study of contributor disengagement in open source. In Open Source Systems: 15th IFIP WG 2.13 International Conference,
OSS 2019, Montreal, QC, Canada, May 26–27, 2019, Proceedings 15. Springer, 116–129.

[65] Audris Mockus, Roy T Fielding, and James D Herbsleb. 2002. Two case studies of open source software development:
Apache and Mozilla. Acm Transactions on Software Engineering Methodology 11, 3 (2002), 309–346.

[66] E. Moon and J. Howison. 2014. Modularity and organizational dynamics in open source software (OSS) production.
20th Americas Conference on Information Systems, AMCIS 2014 (01 2014).

[67] Geoffrey Stewart Morrison. 2013. Tutorial on logistic-regression calibration and fusion:converting a score to a
likelihood ratio. Australian Journal of Forensic Sciences 45, 2 (2013), 173–197. doi:10.1080/00450618.2012.733025

[68] Nicole Novielli and Alexander Serebrenik. 2019. Sentiment and emotion in software engineering. IEEE Software 36, 5
(2019), 6–23.

[69] Cassandra Overney, Jens Meinicke, Christian Kästner, and Bogdan Vasilescu. 2020. How to not get rich: An empirical
study of donations in open source. In ACM/IEEE 42nd international conference on software engineering. 1209–1221.

[70] Mathieu O’Neil, Xiaolan Cai, Laure Muselli, Fred Pailler, and Stefano Zacchiroli. 2021. The coproduction of open source
software by volunteers and big tech firms. News and Media Research Centre.

[71] Mathieu O’neil, Laure Muselli, Mahin Raissi, and Stefano Zacchiroli. 2021. ‘Open source has won and lost the war’:
Legitimising commercial–communal hybridisation in a FOSS project. New Media & Society 23, 5 (2021), 1157–1180.

[72] Charlie Parker, Sam Scott, and Alistair Geddes. 2019. Snowball sampling. SAGE research methods foundations (2019).
[73] Gustavo Pinto, Luiz Felipe Dias, and Igor Steinmacher. 2018. Who gets a patch accepted first?: comparing the

contributions of employees and volunteers. In 11th International Workshop on Cooperative and Human Aspects of
Software Engineering. ACM, 110–113.

[74] Oleksandra Poquet, Liubov Tupikina, andMarc Santolini. 2020. Are forumnetworks social networks? Amethodological
perspective. In Proceedings of the tenth international conference on learning analytics & knowledge. 366–375.

[75] Huilian Sophie Qiu, Alexander Nolte, Anita Brown, Alexander Serebrenik, and Bogdan Vasilescu. 2019. Going farther
together: The impact of social capital on sustained participation in open source. In IEEE/ACM 41st International
Conference on Software Engineering. IEEE, 688–699.

[76] Raddit. 2024. The Rust Programming Language. https://www.reddit.com/r/rust/.
[77] Eric Raymond. 1999. The cathedral and the bazaar. Knowledge, Technology & Policy 12, 3 (1999), 23–49.
[78] Dirk Riehle. 2020. Single-vendor open source firms. Computer 53, 4 (2020), 68–72.
[79] Dirk Riehle, Philipp Riemer, Carsten Kolassa, and Michael Schmidt. 2014. Paid vs. Volunteer Work in Open Source. In

2014 47th Hawaii International Conference on System Sciences. 3286–3295. doi:10.1109/HICSS.2014.407
[80] Peter C. Rigby, Daniel M. German, and Margaret-Anne Storey. 2008. Open Source Software Peer Review Practices: A

Case Study of the Apache Server. In 30th International Conference on Software Engineering (Leipzig, Germany) (ICSE
’08). ACM, New York, NY, USA, 541–550. doi:10.1145/1368088.1368162

[81] Martin Robillard, Deeksha Arya, Neil Ernst, Jin L.C. Guo, Maxime Lamothe, Mathieu Nassif, Nicole Novielli, Alexander
Serebrenik, Igor Steinmacher, and Klaas-Jan Stol. 2024. Communicating Study Design Trade-offs in Software
Engineering. ACM Transactions on Software Engineering and Methodology in press (2024).

[82] Gregorio Robles, Andrea Capiluppi, Jesus M Gonzalez-Barahona, Björn Lundell, and Jonas Gamalielsson. 2022.
Development effort estimation in free/open source software from activity in version control systems. Empirical
Software Engineering 27, 6 (2022), 135.

[83] David Rozado, Ruth Hughes, and Jamin Halberstadt. 2022. Longitudinal analysis of sentiment and emotion in news
media headlines using automated labelling with Transformer language models. Plos one 17, 10 (2022), e0276367.

[84] Santonu Sarkar, Shubha Ramachandran, G. Sathish Kumar, Madhu K. Iyengar, K. Rangarajan, and Saravanan
Sivagnanam. 2009. Modularization of a Large-Scale Business Application: A Case Study. IEEE Software 26, 2
(2009), 28–35.

[85] Mario Schaarschmidt, Klaas-Jan Stol, and Brian Fitzgerald. 2025. The Insider’s Dilemma: Employed Open Source
Developers’ Identification Imbalance and Intentions to Leave. European Journal on Information Systems 34, 5 (2025),
873–892.

[86] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software engineering. IEEE Transactions on
software engineering 25, 4 (1999), 557–572.

[87] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles. 2015. Social barriers faced by newcomers
placing their first contribution in open source software projects. In 18th ACM conference on Computer Supported
Cooperative Work & Social Computing. ACM, 1379–1392.

[88] Synopsys. 2024. Open Source Security and Risk Analysis. https://www.synopsys.com/software-integrity/resources/
analyst-reports/open-source-security-risk-analysis/thankyou.html#UXoverview.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.1080/00450618.2012.733025
https://www.reddit.com/r/rust/
https://doi.org/10.1109/HICSS.2014.407
https://doi.org/10.1145/1368088.1368162
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis/thankyou.html#UXoverview
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis/thankyou.html#UXoverview

Contributions, Collaborations, and Transitions: Paid and Volunteer Developers 31

[89] Xin Tan, Minghui Zhou, and Brian Fitzgerald. 2020. Scaling Open Source Communities: An Empirical Study of the
Linux Kernel. In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). 1222–1234.

[90] Xin Tan, Minghui Zhou, and Zeyu Sun. 2020. A first look at good first issues on GitHub. In 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 398–409.

[91] Rust Team. 2024. Rust, A language empowering everyone to build reliable and efficient software. https://www.rust-
lang.org/.

[92] Rust Moderation Team. 2021. Mod team resignation. https://github.com/rust-lang/team/pull/671.
[93] The Linux Foundation. 2022. Participating in Open Source Communities. https://www.linuxfoundation.org/tools/

participating-in-open-source-communities/.
[94] Yingchen Tian, Yuxia Zhang, Klaas-Jan Stol, Lin Jiang, and Hui Liu. 2022. What Makes a Good Commit Message?. In

44th International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). ACM, New York, NY,
USA, 2389–2401. doi:10.1145/3510003.3510205

[95] Yuriy Tymchuk, Andrea Mocci, and Michele Lanza. 2014. Collaboration in open-source projects: Myth or reality?. In
Proceedings of the 11th working conference on mining software repositories. 304–307.

[96] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level determinants of sustained activity in
open-source projects: A case study of the PyPI ecosystem. In 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 644–655.

[97] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov. 2015. Quality and Productivity
Outcomes Relating to Continuous Integration in GitHub. In 2015 10th Joint Meeting on Foundations of Software
Engineering (Bergamo, Italy) (ESEC/FSE 2015). ACM, New York, NY, USA, 805–816. doi:10.1145/2786805.2786850

[98] Wikipedia. 2024. Rust (programming language). https://en.wikipedia.org/wiki/Rust_(programming_language).
[99] Robert F Woolson. 2007. Wilcoxon signed-rank test. Wiley encyclopedia of clinical trials (2007), 1–3.
[100] Chorng-Guang Wu, James H. Gerlach, and Clifford E. Young. 2007. An empirical analysis of open source software

developers’ motivations and continuance intentions. Information & Management 44, 3 (2007), 253 – 262. doi:10.1016/j.
im.2006.12.006

[101] @XAMPPRocky. 2021. The Core Team Is Toxic. https://hackmd.io/@XAMPPRocky/r1HT-Z6_t
[102] Asterisk Youre. 2021. Steve Klabnik is no longer involved with The Rust Programming Language. https://www.reddit.

com/r/rust/comments/q2zgni/steve_klabnik_is_no_longer_involved_with_the_rust/.
[103] Qunhong Zeng, Yuxia Zhang, Zeyu Sun, Yujie Guo, and Hui Liu. 2024. COLARE: Commit Classification via Fine-

grained Context-aware Representation of Code Changes. In 2024 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). 752–763. doi:10.1109/SANER60148.2024.00082

[104] Yuxia Zhang, Hao He, and Minghui Zhou. 2022. Commercial Participation in OpenStack: Two Sides of a Coin.
Computer 55, 2 (2022), 78–84. doi:10.1109/MC.2021.3133052

[105] Yuxia Zhang, Hui Liu, Xin Tan, Minghui Zhou, Zhi Jin, and Jiaxin Zhu. 2022. Turnover of Companies in OpenStack:
Prevalence and Rationale. ACM Trans. Softw. Eng. Methodol. 31, 4, Article 75 (jul 2022), 24 pages. doi:10.1145/3510849

[106] Yuxia Zhang, Mian Qin, Klaas-Jan Stol, Minghui Zhou, and Hui Liu. 2024. How Are Paid and Volunteer Open Source
Developers Different? A Study of the Rust Project. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. 1–13.

[107] Yuxia Zhang, Klaas-Jan Stol, Hui Liu, and Minghui Zhou. 2022. Corporate dominance in open source ecosystems:
a case study of OpenStack. In Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1048–1060.

[108] Yuxia Zhang, Klaas-Jan Stol, Minghui Zhou, Qunhong Zeng, Mian Qin, and Hui Liu. 2026. Data and code for
paper "Contributions, Collaborations, and Transitions: Paid and Volunteer Developers in the Rust Community".
https://doi.org/10.5281/zenodo.18219218

[109] Yuxia Zhang, Minghui Zhou, Audris Mockus, and Zhi Jin. 2021. Companies’ Participation in OSS Development–An
Empirical Study of OpenStack. IEEE Transactions on Software Engineering 47, 10 (2021), 2242–2259. doi:10.1109/TSE.
2019.2946156

[110] Yuxia Zhang, Minghui Zhou, Klaas-Jan Stol, Jianyu Wu, and Zhi Jin. 2020. How Do Companies Collaborate in
Open Source Ecosystems? An Empirical Study of OpenStack (ICSE ’20). ACM, New York, NY, USA, 1196–1208.
doi:10.1145/3377811.3380376

[111] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan Vasilescu. 2017. The impact of
continuous integration on other software development practices: a large-scale empirical study. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 60–71.

[112] Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis Lau. 2015. A C-LSTM neural network for text classification.
arXiv preprint arXiv:1511.08630 (2015).

[113] Minghui Zhou, Qingying Chen, Audris Mockus, and Fengguang Wu. 2017. On the Scalability of Linux Kernel
Maintainers’ Work. In 2017 11th Joint Meeting on Foundations of Software Engineering. ACM, 27–37.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

https://www.rust-lang.org/
https://www.rust-lang.org/
https://github.com/rust-lang/team/pull/671
https://www.linuxfoundation.org/tools/participating-in-open-source-communities/
https://www.linuxfoundation.org/tools/participating-in-open-source-communities/
https://doi.org/10.1145/3510003.3510205
https://doi.org/10.1145/2786805.2786850
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://doi.org/10.1016/j.im.2006.12.006
https://doi.org/10.1016/j.im.2006.12.006
https://hackmd.io/@XAMPPRocky/r1HT-Z6_t
https://www.reddit.com/r/rust/comments/q2zgni/steve_klabnik_is_no_longer_involved_with_the_rust/
https://www.reddit.com/r/rust/comments/q2zgni/steve_klabnik_is_no_longer_involved_with_the_rust/
https://doi.org/10.1109/SANER60148.2024.00082
https://doi.org/10.1109/MC.2021.3133052
https://doi.org/10.1145/3510849
https://doi.org/10.5281/zenodo.18219218
https://doi.org/10.1109/TSE.2019.2946156
https://doi.org/10.1109/TSE.2019.2946156
https://doi.org/10.1145/3377811.3380376

32 Zhang et al.

[114] Minghui Zhou and Audris Mockus. 2012. What make long term contributors: Willingness and opportunity in OSS
community. In Software Engineering (ICSE), 2012 34th International Conference on. IEEE, 518–528.

[115] Minghui Zhou and Audris Mockus. 2015. Who Will Stay in the FLOSS Community? Modeling Participant’s Initial
Behavior. IEEE Transactions on Software Engineering 41, 1 (Jan 2015), 82–99. doi:10.1109/TSE.2014.2349496

[116] Minghui Zhou, Audris Mockus, Xiujuan Ma, Lu Zhang, and Hong Mei. 2016. Inflow and retention in oss communities
with commercial involvement: A case study of three hybrid projects. ACM Transactions on Software Engineering and
Methodology (TOSEM) 25, 2 (2016), 1–29.

[117] Jiaxin Zhu and Jun Wei. 2019. An empirical study of multiple names and email addresses in oss version control
repositories. In IEEE/ACM 16th International Conference on Mining Software Repositories (MSR). IEEE, 409–420.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.1109/TSE.2014.2349496

	Abstract
	1 Introduction
	2 Hypothesis Development
	2.1 Contributions of Paid and Volunteer Open Source Developers
	2.2 Collaborations among Paid and Volunteer Open Source Developers
	2.3 Becoming Long-Term Contributors

	3 Study Design
	3.1 Data Collection
	3.2 Data Cleaning
	3.3 Comparing Paid and Volunteer Developers
	3.4 Measuring Collaborations with Social Network Analysis
	3.5 Modeling Long-Term Contributors
	3.6 Volunteers' Views on Paid Developers
	3.7 Analysis of Developer Emotion when Volunteers are Hired

	4 Results
	4.1 Contributions of Paid and Volunteer
	4.2 Collaboration between Paid Developers and Volunteers
	4.3 Becoming Long-Term Contributors
	4.4 Volunteers' Perceptions of Paid Developers
	4.5 Community Emotions When Volunteers Become Paid Developers

	5 Discussion
	5.1 Community Governing Policies and Interface Design
	5.2 Volunteers' Perspectives on Paid Developers
	5.3 Harmonizing Company Participation in Open Source Communities
	5.4 Implication for Research

	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

